

a. In C++ you can easily write a function that will work on any one dimensional
array of a particular type, regardless of its size, so long as you tell it what the
size is. For example

 double average_one_dimension(int A[], int N)
 { int total = 0;
 for (int i = 0; i < N; i += 1)
 total += A[i];
 return (double) total / N; }

 but it doesn't work that way for two dimensions. For example, this won't work

 double average_two_dimensions(int A[][], int M, int N)
 { int total = 0;
 for (int i = 0; i < M; i += 1)
 for (int j = 0; j < N; j += 1)
 total += A[i][j];
 return (double) total / (M * N); }

 Explain why.
 This does not need to be a long answer, but it must really explain.

b. Define a class, using public and protected in an appropriate way, to implement
a three dimensional array of ints. It must be able to be used effectively in these
ways (or a close approximation if you can't quite get the detail):

void f()
{ threeDints A(7, 41, 12); // should be similar to int A[7][41][12];
 A.at(3, 33, 9) = 66; // should be similar to A[3][33][9] = 66;
 cout << A.at(i, j, 3); // should be similar to cout << A[i][j][3];
 A.at(1, 1, 1) *= 2; } // should be similar to A[1][1][1] *= 2;

Four example uses does not necessarily mean that you need four functions or
methods.

