Remember: & and *

In a declaration & means reference.

void fff(int x, person & p, int & y) ...

p and y are reference parameters: if the function changes p or y, then the original passed-in value will also be changed.

person & temp = database[3];

temp is a reference variable, it is just an alias for database[3]. Doing anything with temp is exactly the same as doing something with database[3].

Reference variables must be given something to refer to as soon as they are created. You can use references to change the thing they refer to, but you can not make them refer to something else. The assignment temp=database[5] will be equivalent to database[3]=database[5]; it will not change temp so that it is an alias for database[5] from now on. So in a way, references are constants. This is a C++ decision, it is not an essential part of the nature of references.

In a normal expression & means address-of.

char x = ‘C’;

cout << “At byte “ << & x << “ in memory, “ <<

 “ we have the value “ << x << “\n”;
It is OK to use & to find the address of some variable that already exists, if you are using that information for debugging. In other cases, it is very likely to be a mistake.

Technically, the result of an & expression is not a number, but a pointer. If you want a pointer to an object, then create the object in the appropriate way right from the beginning, using new. It is nearly always trouble to create an object the normal way, then make a pointer to it.

The output from the sample code is this:

At byte 0xbfbffa6c in memory, we have the value 1234

C++ by default prints pointers in Hexadecimal, so that they stand out from normal numbers. The “0x” at the beginning is simply the sign that the number is hexadecimal.
#include <iostream>

#include <string>

int GA [1000];

int * make_array_one(int x)

 { GA[0]=x;

 GA[1]=x*11;

 GA[2]=x*111;

 GA[3]=x*1111;

 return GA; }

int * make_array_two(int x)

 { int LA [1000];

 LA[0]=x;

 LA[1]=x*11;

 LA[2]=x*111;

 LA[3]=x*1111;

 return LA; }

int * make_array_three(int x)

 { int * DA = new int [1000];

 DA[0]=x;

 DA[1]=x*11;

 DA[2]=x*111;

 DA[3]=x*1111;

 return DA; }

void check_array(int * PA, string reminder)

 { cout << "\n" << reminder << "\n";

 cout << " PA[0] = " << PA[0] << "\n";

 cout << " PA[1] = " << PA[1] << "\n";

 cout << " PA[2] = " << PA[2] << "\n";

 cout << " PA[3] = " << PA[3] << "\n"; }

void main(void)

 { int * a = make_array_one(1);

 int * b = make_array_two(2);

 int * c = make_array_three(3);

 int * d = make_array_one(4);

 int * e = make_array_two(5);

 int * f = make_array_three(6);

 int loc, moc;

 cout << "A's address is " << a << "\n";

 cout << "B's address is " << b << "\n";

 cout << "C's address is " << c << "\n";

 cout << "D's address is " << d << "\n";

 cout << "E's address is " << e << "\n";

 cout << "F's address is " << f << "\n";

 cout << "loc's address is " << &loc << "\n";

 cout << "moc's address is " << &moc << "\n";

 check_array(a, "should be full of 1s");

 check_array(b, "should be full of 2s");

 check_array(c, "should be full of 3s");

 check_array(d, "should be full of 4s");

 check_array(e, "should be full of 5s");

 check_array(f, "should be full of 6s"); }
A's address is 0x804be00

B's address is 0xbfbfea80

C's address is 0x804e000

D's address is 0x804be00

E's address is 0xbfbfea80

F's address is 0x804f000

loc's address is 0xbfbffa54

moc's address is 0xbfbffa50

should be full of 1s

 PA[0] = 4

 PA[1] = 44

 PA[2] = 444

 PA[3] = 4444

should be full of 2s

 PA[0] = 5

 PA[1] = 55

 PA[2] = 555

 PA[3] = 5555

should be full of 3s

 PA[0] = 3

 PA[1] = 33

 PA[2] = 333

 PA[3] = 3333

should be full of 4s

 PA[0] = 4

 PA[1] = 44

 PA[2] = 444

 PA[3] = 4444

should be full of 5s

 PA[0] = 5

 PA[1] = 55

 PA[2] = 555

 PA[3] = 5555

should be full of 6s

 PA[0] = 6

 PA[1] = 66

 PA[2] = 666

 PA[3] = 6666

