218 2005-02-22 Reinventing Strings

will use the demeaning name MyString to refer to them, just to avoid confusion with the things that C++ calls strings, or even worse with the things that C calls strings.

The basic set-up so far, using global variables (which we know are bad) to represent the three essential component parts of a MyString, and defining functions to do all the work. Prototypes first, then definitions.

const int Scapacity=100;

char Sdata[Scapacity];

int Slength=0;

void initialise(void);

int length(void);
                      // how long is my string at the moment?
char get(int position);                 // looking: equivalent to using S[position]
void set(int position, char value);     // modifying: equivalent to S[position]=value;

void add(char c);                       // add character to end of MyString
void print(void);                       // print this MyString
void read(void);                        // read a new value for this MyString
void initialise(void)

{ Slength=0; }

int length(void)

{ return Slength; }

char get(int position)

{ if (position<0 || position>=Slength)

  { cerr << “MyString access out of bounds\n”;

    exit(1); }

  return Sdata[position]; }

void set(int position, char value)

{ if (position<0 || position>=Slength)

  { cerr << “MyString access out of bounds\n”;

    exit(1); }

  Sdata[position]=value; }

void add(char c)

{ if (Slength>=Scapacity)

  { cerr << “MyString capacity exceeded\n”;  // hope to make this possible soon
    exit(1); }

  Sdata[Slength]=c;

  Slength+=1; }

void print(void)

{ for (int i=0; i<Slength; i+=1)

    cout << Sdata[i]; }

void read(void)

{ initialise();

  while (true)

  { char c;

    cin >> c;

    if (c==‘ ’)

      break;

    add(c); } }

To prove I’ve got it right this time, let’s add a main() and run it.
// Insert a #include <iostream> right at the top
void main(void)

{ initialise();

  add('A');

  add('b');

  add('c');

  add('d');

  add('e');

  add('f');

  set(3, get(0)+25);

  add('\n');

  print(); }

$ CC x.cpp
$ a.out
AbcZef

$ 
Here’s a slightly more interesting example. I want to implement some kind of two player game. The first requirement is to ask the two players what their names are so that they can be referred to properly. Something like this...

void main(void)

{ cout << “Two players, please enter your names\n”;

  cout << “Player 1: ”;

  read();

  cout << “Player 2: ”;

  read();

But of course that is rubbish. We’ve only got one MyString, so I can only read the second player’s name at the expense of forgetting the first’s.

The way this MyString implementation is written, it is impossible to have two MyStrings. Of course I could define a second trio of global variables, perhaps Tcapacity, Tdata, and Tlength, but all of the functions that work on strings have the names of the original three Scapacity, Sdata, and Slength built into them. I’d have to duplicate all the functions to have one set that works on S and another set that works on T. Clearly ridiculous, and an unscalable solution.

An alternative solution might be to just modify the functions once, so that instead of working on three specific global variables, they are given those values as three extra parameters. Then we could define a lot of trios of capacity, data, and length, and use any MyString just by passing its representation to the functions as parameters.

So I might have an experimental main() like this:

void main(void)

{ const int Scapacity=100;

  char Sdata[Scapacity];

  int Slength=0;

  const int Tcapacity=250;

  char Tdata[Tcapacity];

  int Tlength=0;

  const int Rcapacity=9000;

  char Rdata[Rcapacity];

  int Rlength=0;

/* Realise that the preceding nine statements are really just declaring three MyStrings that could be named S, T, and R.  It is a very complicated way of saying  MyString S, T, R;  but at least we can easily give them all different capacities if we want to */
  add(Scapacity, Sdata, Slength, ‘a’);

  add(Scapacity, Sdata, Slength, ‘b’);

  add(Scapacity, Sdata, Slength, ‘c’);

  add(Scapacity, Sdata, Slength, ‘d’);

  add(Scapacity, Sdata, Slength, ‘e’);

  add(Tcapacity, Tdata, Tlength, ‘X’);

  add(Tcapacity, Tdata, Tlength, ‘Y’);

  add(Tcapacity, Tdata, Tlength, ‘Z’);

  set(Scapacity, Sdata, Slength, 2, get(Tcapacity, Tdata, Tlength, 1));

  print(Scapacity, Sdata, Slength); }
All that lot does the following: 

Add ‘a’, ‘b’, ‘c’, ‘d’, ‘e’ to MyString S; 

Add ‘X’, ‘Y’, ‘Z’ to MyString T;

Set the 2nd character of S equal to the 1st character of T;

Print S;

So the output would be

abYde

And this is how all the utility functions would have to be redefined:

void initialise(const int capacity, char data[], int & length)

{ length=0; }

int length(const int capacity, char data[], int & length)

{ return length; }

char get(const int capacity, char data[], int & length, int position)

{ if (position<0 || position>=length)

  { cerr << “MyString access out of bounds\n”;

    exit(1); }

  return data[position]; }

void set(const int capacity, char data[], int & length, int position, char value)

{ if (position<0 || position>=length)

  { cerr << “MyString access out of bounds\n”;

    exit(1); }

  data[position]=value; }

void add(const int capacity, char data[], int & length, char c)

{ if (length>=capacity)

  { cerr << “MyString capacity exceeded\n”;  // hope to make this possible soon
    exit(1); }

  data[length]=c;

  length+=1; }

void print(const int capacity, char data[], int & length)

{ for (int i=0; i<length; i+=1)

    cout << data[i]; }

void read(const int capacity, char data[], int & length)

{ initialise(capacity, data, length);

  while (true)

  { char c;

    cin >> c;

    if (c==‘ ’)

      break;

    add(capacity, data, length, c); } }

Just to prove it’s all above-board, I’ll combine those functions with the new horrible main from the top of the last page, and make sure it runs as expected:

$ CC y.cpp
$ a.out
abYde$

It worked!

Why is the $ at the end of the last line?

Because there was no newline, ‘\n’, in the string to be printed. Under unix, you get what you ask for. If this had been running under Windows or DOS, it would have automatically inserted a ‘\n’ at the end.

But this is hideous, nobody should have to program like this. There are too many parameters, it would be impossible to notice if I had accidentally switched around (for example) an Sdata and a Tdata somewhere.

We are just about to see how we could change the MyString implementation, so that our last example main could be changed to:
void main(void)

{ MyString S, T, R;

  add(S, ‘a’);

  add(S, ‘b’);

  add(S, ‘c’);

  add(S, ‘d’);

  add(S, ‘e’);

  add(T, ‘X’);

  add(T, ‘Y’);

  add(T, ‘Z’);

  set(S, 2, get(T, 1));

  print(S); }
And soon make it even easier-looking than that.
