
We have to store information about people and their children (who are also people of course). For each person, we record their name, date of birth, date of death, number of children, who those children were (up to 10 of them), and who their parents are, thus:

struct Person

{ string name;

 int born, died;

 int numchild;

 Person *children[10];

 Person *mother;

 Person *father; };

If a person is still alive, their date of death is recorded as -1. If a person’s mother or father is unknown, the value NULL is stored in their mother and/or father variables.

There is also a big (unsorted) array storing pointers to all of the Person structs:

Person *everyone[100000];

int numpeople;

Of course arrays are not good enough. Get it started the easy way, test the basic ideas, then change to something sensible like a linked list.

a

Write a function that searches through the array of everyone to find the oldest still-living person, printing his or her name.

b

Write a function PrintParents(Person *p) that prints the names of the parents of the indicated person.

c

A sibling is a brother or sister: somebody who has the same mother or father as yourself. Write a function PrintSiblings(Person *p) that prints the names of all the siblings of the indicated person. Note that nobody can be considered their own sibling.

d

Write a function PrintChildren(Person *p) that prints the names of all the children of the indicated person.

e

Write a function PrintGrandchildren(Person *p) that prints the names of all the grand-children of the indicated person.

f
Write a function PrintDescendants(Person *p) that prints the names of all descendants of the person (all children, children’s children, children’s children’s children, and so on without limit).

g
Write a function Inbred(Person *p) that finds out whether the two persons parents were brother and sister, returning 1 for yes, 0 for no.

h

Write a function Related(Person *p1, Person *p2) that finds out whether the two persons are “blood relatives”, having at least one common ancestor, returning 1 for yes, 0 for no.

