
Sound Library

A Sound object is a bit like an array and a bit like a file, which means that there isn’t much
new to learn.

Creating a Sound object
 In the following, sss represents the name of the variable used to hold a recorded sound.
It is like the name of an array or an ifstream, or any other variable: you can call it whatever
you want within reason.
 option 1: Making an empty sound object that you can later fill with computer generated

samples or samples captured from the microphone.
 Sound sss(10.0);
 that makes an object capable of holding a ten second recording at 11025

samples per second.
 Sound sss(60.0, 44100);
 that makes an object capable of holding a one minute recording at CD quality,

44.1k samples per second.
 option 2: Making a Sound object that contains samples from a pre-existing sound file

(only the .WAV format is supported).
 Sound sss(“song.wav”);
 that makes an object holding the entire contents of the named file.
 Sound sss(“song.wav”, 20.0, 5.0);
 that makes an object containing only five seconds of music, starting 20

seconds from the beginning of the track.

Playing the sound that is recorded in a Sound object
 sss.play();

Capturing samples from the microphone into an existing Sound object
 sss.record();
 The recording will continue until the sound object is full, so if you create a

four minute Sound object, you must record a full four minutes into it.

Getting information from a Sound object
 sss.getlength();
 is a function that returns the number of samples in the object.
 sss.samplerate();
 is a function that returns the number of samples that will be played per second.

Accessing the numerical samples

Simply treat the sound object as an array. For example, to make the first whole second be
perfectly silent, use a loop like this

 for (int i=0; i<sss.samplerate(); i+=1)
 sss[i]=0;

Remember to add winmm.lib to the project’s properties’ linker’s command-line’s
additional options.

