
Operators in C++

There are four kinds of operator in C++. Classifying operators according to
their kind makes it easy to see how to use them.

1. Dyadic.
(This is very frequently called Binary instead, but that is confusing because
everything on a computer is binary, the word is being used in a slightly
different sense).
Dyadic operators are the most familiar kind, they appear between the two
values, * for multiplication is an example. To multiply 6 by nine you write

6 * 9.

2. Unary Prefix

(Sometimes people say Monadic instead of Unary, but that is quite
unusual).
They are also very familiar, they only work on one value, and are placed
before it. As well as its very familiar use as a dyadic operator, - can also

be a unary prefix operator. If you want a negative seven (or minus seven
as I prefer to call it), just put a - sign in front of it, the same as in

mathematics: - 7.

3. Unary Postfix

These are like the fairly familiar use of ! for factorials. They also only work

on a single value, but they are written after it. C++ does not use ! for

factorial, it means something else. None of the postfix operators work on
plain numbers, so I’ll have to expand our domain a bit. If you have stored
a number in a variable named x and you want to add one to it, one way is

to follow it by the ++ operator: x ++. We haven’t talked about variables yet.

Function calls are also considered to be unary postfix operations. Although
you will typically have a number of values involved in a function call, like
move_to(120, 30), the bracket pair () are seen as an operator being

applied to the function move_to.

4. Conditional Expression

(some people say Triadic or Ternary, but there is only one such operator,
so it seems a little pretentious to use a fancy generalisation. Using its name
sounds better)
Three things are involved in a conditional expression, and it looks like this:
6 < 7 ? 4 : 8. The ? and : are considered to be parts of the same

operator. It looks as though four things are involved in that example, but
the ? : is only dealing with three things: 6 < 7 and 4 and 8. The value of

that expression is 4 if 6 < 7 turns out to be true, and 8 if it doesn’t.

Operators also have priorities, a lower number represents a higher priority.
This too is perfectly familiar. Everybody knows that 2 + 3 × 4 is supposed

to be 14, not 20.

I will list the operators that you will see in this class first. Then I’ll give the
whole list for future reference.

Priority Kind General use operator meaning

1 dyadic namespaces :: distinguishing names

2 unary post varied ++ increment

 -- decrement

 () function call

 [] array access

 . access member

3 unary pre arithmetical ++ increment

 -- decrement

 + does nothing

 - negate

 logical ! swap true and false

 ~ swap 0 and 1 in binary values

 typecast () e.g. (int)3.14159

5 dyadic arithmetical * multiplication

 / division

 % modulo, or find remainder

6 dyadic arithmetical + addition

 - subtraction

7 dyadic binary shift << shift left

 >> shift right

8 dyadic comparison < less than

 > greater than

 <= less than or equal

 >= greater than or equal

9 dyadic comparison == equality

 != inequality

10 dyadic logical & and on binary digits

11 dyadic logical ^ exclusive or on binary digits

12 dyadic logical | or on binary digits

13 dyadic logical && and on true or false

14 dyadic logical || or on true or false

15 dyadic update = assignment

 *= multiply and update

 /= divide and update

 %= modulo and update

 += add and update

 -= subtract and update

 &= binary and and update

 |= binary or and update

 ^= binary exclusive or and update

 <<= left shift and update

 >>= right shift and update

 triadic conditional ? : if A then B otherwise C

 dyadic ordering , calculate and forget

There is one further distinction to be made. If a sequence of operators have
the same priority, as in 2 * 3 / 4, they happen from left to right. The one

exception is for all of the operators with priority 15. a = b = c is the same

as a = (b = c), and a ? b : c ? d : e is the same as a ? b : (c ? d

: e).

Some operators have extra meanings for different types. For example, the
dyadic + doesn’t only add numbers together, it can be used on strings too,

taking "hipp" and "opotamusses" and producing "hippopotamusses".

Generally, the result an operator produces has the same type as the values it
was given. In 8 / 3, the two operands are both whole numbers, ints, so the

result will also be an int. Everything after where the decimal point would be

is thrown away. The value of 8 / 3 is 2. If you want the “real” answer, say

8.0 / 3.0 instead.

In numeric operations, sometimes the values an operator gets have different
types. In that case, there is a very simple rule. The value that has the least
precision is converted to have the same type as the other. doubles have more

precision than floats, and floats have more precision than ints. (but

remember, there is hardly ever any reason to use float any more). So if the

expression is 8 / 3.0, the 8 is promoted to 8.0 and the answer is 2.666666...

Later on, you will come across different sizes of ints. A normal int almost

always has a range of approximately ±2,000,000,000, but there is also a
smaller version with a range of about ±33,000, and a larger version with an
approximate range of ±9,000,000,000,000,000,000. The rule works the same
way, a value with a smaller range is converted to the type with the larger
range.

In all cases, floats and doubles are considered to be more precise or bigger

than any kind of int.

This is the whole list of operators, including those you won’t meet until
another semester.

Priority Kind General use operator meaning

1 dyadic namespaces :: distinguishing names

2 unary post varied ++ increment

 -- decrement

 () function call

 [] array access

 . access member

 -> access member through pointer

3 unary pre arithmetical ++ increment

 -- decrement

 + does nothing

 - negate

 logical ! swap true and false

 ~ swap 0 and 1 in binary values

 pointers & create a pointer

 * follow a pointer

 typecast () e.g. (int)3.14159

 measuring sizeof how many bytes something fills

 memory new request more memory

 allocation delete give unneeded memory back

4 dyadic member ptr .* general access to members

 ->* as above but through pointer

5 dyadic arithmetical * multiplication

 / division

 % modulo, or find remainder

6 dyadic arithmetical + addition

 - subtraction

7 dyadic binary shift << shift left

 >> shift right

8 dyadic comparison < less than

 > greater than

 <= less than or equal

 >= greater than or equal

9 dyadic comparison == equality

 != inequality

10 dyadic logical & and on binary digits

11 dyadic logical ^ exclusive or on binary digits

12 dyadic logical | or on binary digits

13 dyadic logical && and on true or false

14 dyadic logical || or on true or false

15 dyadic update = assignment

 *= multiply and update

 /= divide and update

 %= modulo and update

 += add and update

 -= subtract and update

 &= binary and and update

 |= binary or and update

 ^= binary exclusive or and update

 <<= left shift and update

 >>= right shift and update

 triadic conditional ? : if A then B otherwise C

 dyadic ordering , calculate and forget

