EEN118

Mid-term Test

23rd November 2004

Model Solutions
5. (40%)
There is a data-file called “stats.txt”, which contains anonymous vital statistics for a large number of people. For each person, their weight in pounds and height in inches are recorded as integers, separated by a space, on a single line of the file. For example, the first five lines of the file might look like this:
159 71
170 67

215 68

125 67

170 72
You can see that it is a very simple file. There may be up to 100,000 lines in the file, no weight is over 1,000 pounds, and no height is over 100 inches.
Write a complete C++ program that first reads the data from that file, then starts accepting inputs from the user. The user will simply type numbers (integers); each time the user types an integer, the program should respond with the average weight of all the people with that exact height.

So, if the user enters 67, the output should be the average weight of all the people who are exactly 67 inches tall. If the five example lines were the complete input file, the output in this case would be 148. Responses should be rounded to the nearest integer.
Do not worry about stopping the program: the user will type control-c when he, she, or it wants to stop.

You may choose any reasonable format for your output. If there are any special conditions to be dealt with, you should decide how to deal with them, but do not let your program crash. You may rest assured that all input from the file and from the user will be error-free.

We’ll try it the bad way first, just for contrast. The bad way would be to wait until the user enters a height, then open the file, reading every entry, keeping a running total of all those with a matching height, then close the file, and print the average. This whole procedure would of course be in a loop so that the user can ask multiple questions. I’ll write the program first, then think about why it’s bad.
void main(void)

 { while (true)

 { cout << “Enter height: “;

 int h_wanted;

 cin >> h_wanted;

 int total=0, num=0;

 ifstream fin(“stats.txt”);

 while (true)

 { int h_read, w_read;

 fin >> h_read >> w_read;

 if (fin.fail())

 break;

 if (h_read == h_wanted)

 { total += w_read;

 num += 1; } }

 fin.close();

 if (num==0)

 cout << “No matches\n”;

 else

 { double avg = ((double)total)/num;

 int round_avg = (int)(avg + 0.5);

 cout << “for ht ” << h_wanted << “, avg wgt is ” << round_avg << “\n”; } } }

Things to note:

The question guarantees that all input will be correct and appropriate, so there is no need for any checks after the ifstream line. But you know that the data file is not infinite, it must end at some time, so the check is needed after the “fin >>” line.

It is possible that no samples will have the requested height, and division by zero is definitely bad, so we must avoid trying to calculate the average if the number of samples is zero.

Remember that a normal double(int typecast just throws away everything after the decimal point, so it doesn’t round to the nearest integer, it always rounds down. Adding 0.5 first is the simplest trick (although it doesn’t work for negative numbers).

Also remember that input streams (cout, ifstream, and so on) do not attempt to predict errors, they just report them. If you want to see if you are at the end of a file, you need to attempt to read something, then look for an error condition. That’s why we check for (fin.error()) after the fin>>h>>w rather than before, where it logically belongs.

Why is this a bad solution? First of all, the question clearly instructs you to first read all the data from the file, then start accepting inputs from the user, so this program doesn’t do what the question demands. Why would the question make such a demand? Reading files from disc is very slow, relative to the speed of normal computer operations. The difference in speed between disc and memory can easily be a factor of 1,000,000 to one.

If there is a big data file, then yes, it would require a lot of memory to keep all the data ready for immediate access, but it could make an enormous difference to how responsive the program is: how long you have to wait for an answer.

The most direct way is to simply create an array big enough to store all the heights in the file, and another array big enough to store all the weights. Then user queries can be answered exceptionally quickly just be scanning through the arrays. We are told that there could be up to 100,000 lines in the file, so we know how big the arrays must be. But we don’t know exactly how long the file is (just a maximum), so we can’t just blindly read 100,000 entries. We must still detect reaching the end of the file. So this would be an acceptable start:

const int maxsize = 100000;

int heights[maxsize], weights[maxsize];

int num_entries = 0;

void read_data(void)
 { ifstream fin(“stats.txt”);

 num_entries=0;

 while (true)

 { int h_read, w_read;

 fin >> h_read >> w_read;

 if (fin.fail())

 break;

 heights[num_entries] = h_read;

 weights[num_entries] = w_read;

 num_entries+=1; }

 fin.close(); }

This function is very similar to the middle section of the original program. The only difference is that it doesn’t try to do anything with the data, it just puts the data safely in the arrays, so it is ready to use in the future.

Of course, there is no real need for this to be a separate function, it could all be put in main(), but functions are good. They isolate different parts of a program. If you make a real mess of designing this one function, it won’t spread out and cause a real mess of the other parts.

For this example, I made the important things (heights, weights, num_entries, and maxsize) globals. They are not defined inside a function, so they are accessible to the whole program. That means that I don’t have to pass lots of parameters when calling my functions, but it also means that the solution isn’t very scalable. If the problem became a bit more complex, I could end up with a really nasty program. I’ll do it again without globals later.

All out main() function has to do is call on read_data once, right at the very beginning, and it’ll never have to think about files ever again.

Now for the query processing part. Another self-contained little function is probably the best plan. It should repeatedly let the user enter a height, and search the array for all matching heights, calculating the average just like the original program did:

void process(void)

 { while (true)

 { cout << “Enter height: “;

 int h_wanted;

 cin >> h_wanted;

 int total=0, num=0;

 for (int i=0; i < num_entries; i+=1)

 { if (heights[i] == h_wanted)

 { total += weights[i];

 num += 1; } }

 if (num==0)

 cout << “No matches\n”;

 else

 { double avg = ((double)total)/num;

 int round_avg = (int)(avg + 0.5);

 cout << “for ht ” << h_wanted << “, avg wgt is ” << round_avg << “\n”; } } }

so main() is really easy:

void main(void)

 { read_data();

 process(); }

Now, just for variety, let’s see a slightly nicer version, which doesn’t make up any global variables. Each function will have to receive any input it needs as proper parameters. They will all work in exactly the same way, just the set-ups will be different.

First, read_data will have to be given both arrays and their maximum size as parameters. The best way for it to report the actual number of data entries read from the file would be by returning it as the final result:

int read_data(int hts[], int wts[], int max)

 { ifstream fin(“stats.txt”);

 int num=0;

 while (true)

 { int h_read, w_read;

 fin >> h_read >> w_read;

 if (fin.fail())

 break;

 hts[num] = h_read;

 wts[num] = w_read;

 num+=1; }

 fin.close();

 return num; }

See? Hardly any difference. The same sort of thing would happen to process(), but again just for variety, let’s d something different. We’ll have one function that gets the desired height input from the user, and another one that does the real work of finding the average weight, so it’ll have to receive the wanted height as another parameter. It can return the average weight as its result.

int average_weight(int h_wanted, int hts[], int wts[], int num)

 { int total=0, num=0;

 for (int i=0; i < num; i+=1)

 { if (hts[i] == h_wanted)

 { total += wts[i];

 num += 1; } }

 if (num==0)

 return -1;

 double avg = ((double)total)/num;

 return (int)(avg + 0.5); }

So now, all we have to do is define main(). This function has to remember to create the arrays (they aren’t global any more) and get the user input, but there is nothing really difficult for it to do.
void main(void)

 { const int max_size = 100000;

 int heights[max_size], weights[max_size];

 int num = read_data(heights, weights, max_size);

 while (true)

 { int query;

 cout << “Enter height: ”;

 cin >> query;

 int avg = average_weight(query, heights, weights, num);

 if (avg == -1)

 cout << “No matches\n”;

 else

 cout << “for ht ” << query << “, avg wgt is ” << avg << “\n”; } }

Nothing to it!

There is still room for improvement. An array of 100,000 ints is not very big, but we can easily reduce the memory requirements to even less, and at the same time dramatically speed up the program.

We are told that all heights will be between 1 and 100. That means there are only 100 different possible questions that we could ever have to answer (100 different possible user inputs).

We could just calculate the average weight for each of those possible heights once, store the answers in a mere 100 element array, and never have to calculate anything ever again.

In fact, we could calculate the average at the same time as reading the data from the file. Instead of recording ever single height and weight in a pair of giant arrays, we could simply keep a running total of the weights for each different height, along with the number of times each height has appeared. Then the average is just one divided by the other.

All we’d need is two 100-item arrays, perhaps called totwt and totnum. The idea being that totwt[67] would contain the total weight for everyone who is 67 inches tall, and totnum[67] would contain the count of the number of people who are 67 inches tall.

So the read_data function would change quite a lot. I’ll also go back to using global variables just for this last part.
const int maxht = 100;

int totwt[maxht+1], totnum[maxht+1];

void read_data(void)

 { for (int i=0; i<=maxht; i+=1)

 { totwt[i]=0;

 totnum[i]=0; } }

 ifstream fin(“stats.txt”);

 while (true)

 { int h, w;

 fin >> h >> w;

 if (fin.fail())

 break;

 totwt[h] += w;

 totnum[h] += 1; }

 fin.close(); }

Nothing to it again. A more sophisticated and efficient program doesn’t have to be any harder to write.

Just one minor point: the arrays are declared with size [maxht+1] for a reason. Remember that the declaration int A[100] would make an array with 100 elements. They are always numbered from 0, so the last (hundredth) one would be A[99]. The question tells us that a height of 100 is possible, so not having an element [100] in the arrays would be a mistake.

Now, the process() function needs to be different, because it has so much less work to do. No searching at all.

void process(void)

 { while (true)

 { cout << “Enter height: “;

 int h;

 cin >> h;

 if (totnum[h]==0)

 cout << “No matches\n”;

 else

 { double avg = ((double)totwt[h])/totnum[h];

 int round_avg = (int)(avg + 0.5);

 cout << “for ht ” << h << “, avg wgt is ” << round_avg << “\n”; } } }

A lot like the original process() function, but now even simpler.
And that really would be the whole thing. Main() would revert to its original form

void main(void)

 { read_data();

 process(); }

and the program is complete.

Just for reference, I’ll include the version of the program that does the processing this new efficient way, but doesn’t use global arrays. There is nothing new to be said about it, so I won’t add any text around it. You should probably try to design it yourself before reading my version.

#include “library.h”

void read_data(int wts[], int num[], int max)

 { for (int i=0; i<=max; i+=1)

 { wts[i]=0;

 num[i]=0; } }

 ifstream fin(“stats.txt”);

 while (true)

 { int h, w;

 fin >> h >> w;

 if (fin.fail())

 break;

 totwt[h] += w;

 totnum[h] += 1; }

 fin.close(); }

int average_weight(int qh, int wts[], int num[])
 { if (totnum[qh]==0)

 return -1;

 double avg = ((double)wts[qh])/num[qh];

 return (int)(avg + 0.5); }
void main(void)

 { const int maxht = 100;

 int totwt[maxht+1], totnum[maxht+1];

 read_data(totwt, totnum, maxht);

 while (true)

 { cout << “Enter height: “;

 int query;

 cin >> query;

 int avg = average_weight(query, totwt, totnum);

 if (avg == -1)

 cout << “No matches\n”;

 else

 cout << “for ht ” << query << “, avg wgt is ” << avg << “\n”; } }

6. (40%)
(a)

Write a C++ function that takes one integer parameter, n. It should print a triangle of stars exactly n lines high and n columns wide. Do not use recursion, and do not use a ‘while’ loop. Any repetition needed should be provided by ‘for’ loop(s).

The output should be a right-angled triangle with the right angle in the bottom left.

For example, if the value of the parameter is 6, the output should be:

*

**

The value of the parameter will be at least 1, and at most 50.

We should make a plan first. Clearly the triangle can be seen as a bunch of lines with ever-increasing lengths. It would be very easy to write a function that prints some number (a parameter) of stars:

void print_stars(int ns)

 { for (int i=0; i<ns; i+=1)

 print(“*”); }

This function only prints the stars, it doesn’t put the ‘\n’ at the end that is required to make a proper line, separate from the other lines. What difference does it make? Not much. I’ll do it both ways.

To print a proper line of stars with a newline at the end, is just as easy:

void print_stars_line(int ns)

 { print_stars(ns);

 print(“\n”); }

Now a whole triangle consists of a line of 1 star, followed by a line of two starts, followed by a line of three stars, ..., all the way up to a line of n stars. That is stunningly easy no matter which way we made a line of stars:

void triangle_a1(int n)

 { for (int i=1; i<=n; i+=1)

 print_stars_line(i); }

OR

void triangle_a2(int n)

 { for (int i=1; i<=n; i+=1)

 { print_stars(i);

 print(“\n”); } }

This solution used two separate functions. That in NOT recursion. Recursion means one function using itself. But if for some reason you wanted to do it all in one single function, you would still think of it the same way. First deal with each line from line 1 to line n, one at a time. To deal with line X, just print X stars followed by a newline.

void triangle_a3(int n)

 { for (int line=1; line<=n; line+=1)

 { for (int star=1; star<=line; star+=1)

 print(“*”);

 print(“\n”); } }

(b)

Write another function that does exactly the same as (a), but this time you may only use ‘while’ loop(s) to control repetition.

To use a while loop instead, just keep in mind what a for-loop does, and translate your original version. First initialise the control variable, when have a while-loop just borrowing the for-loop’s condition, and perform the update operation as the last step in the body of the loop. In general

for (int i=XXX; YYY; ZZZ) BBB

becomes

int i=XXX; while (YYY) { BBB; ZZZ; }

So our three versions of the previous answer become:

void print_stars(int ns)

 { int i=0;

 while (i<ns)

 { print(“*”);

 i+=1; } }

void print_stars_line(int ns)

 { print_stars(ns);

 print(“\n”); }

void triangle_b1(int n)

 { int i=1;

 while (i<=n)

 { print_stars_line(i);

 i+=1; } }

OR

void triangle_b2(int n)

 { int i=1;

 while (i<=n)

 { print_stars(i);
 print(“\n”);
 i+=1; } }

OR
void triangle_b3(int n)

 { int line=1;

 while (line<=n)

 { int star=1;

 while (star<=line)
 { print(“*”);
 star+=1; }

 print(“\n”);
 line+=1; } }

(c)

Write another function, very similar to (a), but this time using stars and spaces to produce a right-angled triangle with the right angle in the top right. You may use any kind of loop you like.

For example, if the value of the parameter is 6, the output should be:

 **

 *
The value of the parameter will be at least 1, and at most 50.

Just look at the triangle for a moment, and make sure you know what the simple pattern is. How could you tell someone how to produce this pattern on a typewriter?

Again we have n lines, but each line consists of an increasing number of spaces followed by an equally decreasing number of stars.

Line 1 begins with no spaces, line 2 begins with 1 space, line 3 begins with 2 spaces. That’s easy: line L begins with L-1 spaces.

The total of spaces on stars on each line is equal to n. If line L has L-1 spaces and a total of n characters, it must have n-(L-1) stars.

So there we are:

void triangle_c(int n)

 { for (int L=1; L<=n; L+=1)

 { const int spaces=L-1;

 const int stars = n-spaces;

 for (int i=0; i<spaces; i+=1)

 print(“ ”);

 for (int i=0; i<stars; i+=1)

 print(“*”);

 print(“\n”); } }

(d)

Write another function, very similar to (a), but this time using stars and spaces to produce a row of triangles as shown in the example. If the parameter is called ‘n’, then each triangle should be n rows high, and 2n-1 columns wide, and there should be n such triangles in a row. You may use any kind of loop you like.

For example, if the value of the parameter is 6, the output should be:

**

 ********* ********* ********* ********* ********* *********

 ******* ******* ******* ******* ******* *******

 ***** ***** ***** ***** ***** *****

 *** *** *** *** *** ***

 * * * * * *
Definitely harder, but still all you have to do is work out what the pattern is.

There are still N lines. Each line consists of N identical groupings. Each grouping is a number of spaces followed by a number of stars, followed by a number of spaces.

How many stars in each grouping? Well, as the line number, L, increases through 1, 2, 3, 4, 5, 6, the number of stars decreases through 11, 9, 7, 5, 3, 1. You don’t even need to count them: you can see that there is just one star per group on the last line, we lose 2 stars per group on each line, so if the first line has S stars per group, the second has S-2, the third has S-4, and so on: Line L has S-(2L-2) stars per group. We know that the Nth line has 1 star, so S-(2N-2) = 1, so S = 2N-1 stars per group, by simple algebra.

But who needs that kind of complex thinking? It can be much easier than that. If we continue to count the lines starting from 1 (instead of 0 which is the traditional way to count in computing), you can see that the number of spaces has a very simple pattern. Line L has (L-1) spaces both before and after each group of stars. The groups of stars are like two back-to-back triangles, with one extra star between them. Line 1 has 5+1+5 stars, line 2 has 4+1+4 stars, line 3 has 3+1+3 stars, ..., down to line n having 0+1+0 stars. The number of stars on either side of the “+1+” starts at n-1, and is reduced by one on each line.

So we end up with this:

void zigzag(int N)

 { for (int L = 1; L <= N; L += 1) // L is the line number
 { for (int G = 1; G <= N; G += 1) // G is the group number;
 { const int spaces = L-1;

 const int stars = N-L;

 for (int i=0; i<spaces; i+=1)

 print(“ ”);

 for (int i=0; i<stars; i+=1)

 print(“*”);

 print(“*”);

 for (int i=0; i<stars; i+=1)

 print(“*”);

 for (int i=0; i<spaces; i+=1)

 print(“ ”); } }

With anything like this, there is an unlimited number of correct solutions. The only thing you really need to be concerned with is seeing what the repeating pattern is, and putting it in a numeric formulation.

7. (20%)
Here is an implementation of the Binary Chop Search algorithm. Given a wanted value, it finds its position in the array, and returns it. If the number is not in the array, it returns -1 as a special failure signal.
const int size=1000000;

int A[size];

int find(int wanted)

{ int min=0, max=size-1;

 while (min<max)

 { const int mid=(min+max)/2;

 if (A[mid]==wanted)

 return mid;

 else if (A[mid]<wanted)

 min=mid+1;

 else

 max=mid-1; }

 return -1; }

(a)
What special condition on the contents of the array must be met for this function to work?

And more importantly, why is that condition required?
The data must be ordered or pre-sorted. Binary chop search works by looking at the “middle” item, and assuming that if the number you see there is already bigger than the number you’re looking for, then you must have “overshot”: what you are looking for must be at an earlier position (smaller index) in the array. This reasoning is only valid if the array content is in order. For an unordered array the position of one number has no connection with the position of any other number.
(b)
What is the maximum number of times that the body (contents) of the ‘while’ loop in the above example could possibly have to be executed in a search? (i.e. how many times round the loop?)

Every time “round the loop”, the number of items remaining to be searched is halved. Min and max represent the beginning and end of the portion of the array that is still worth looking at. Either min is increased to the half-way point, or max is reduced to the half-way point. Either way, the distance between min and max is halved. When min and max catch up with each other (no distance between them), the loop stops.

We start off with 1,000,000 items to search. How many times do you have to halve 1,000,000 before it goes away (is reduced to less than one)?

2answer(1000000, or answer(log2(1000000) or answer(log(1000000)/log(2)

220 is about 1,000,000, so the maximum is 20 times round the loop
(c)
Show how you would adapt the given function so that it searches (or inverts) a numeric function ‘f’. For example, if f were defined thus:

double f(double x) { return x*x; },

then find could be used to discover square-roots.

Original function

const int size=1000000;

int A[size];

int find(int wanted)

{ int min=0, max=size-1;
 while (min<max)

 { const int mid=(min+max)/2;

 if (A[mid]==wanted)

 return mid;

 else if (A[mid]<wanted)

 min=mid+1;

 else

 max=mid-1; }

 return -1; }

Solution

const double accuracy = 0.0001;

double f(double x)

 { return x*x; }
double find(double wanted)

{ double min=0, max=wanted;
 if (max<1) max=1;

 while (max-min < accuracy)

 { const double mid=(min+max)/2;

 if (f(mid)==wanted)

 return mid;

 else if (f(mid)<wanted)

 min=mid;

 else

 max=mid; }

 return -1; }

The function stays very much the same. We have to realise that we are dealing entirely with floating point numbers now, ints just won’t do. The function f (in this case “square”, but it could be any* function) replaces the array A as the container of data.
In the original, given y, we try to find a value of x, such that A[x] == y
In the new, given y, we try to find a value of x, such that f(x) == y

that is what it’s all about.

The only real differences are:

We can’t expect a perfect match with some functions; a degree of acceptable accuracy is needed instead.

We can only move min or max to mid on each iteration, not to mid-1 or mid+1. When we are dealing with arrays, we know there is nothing between A[mid] and A[mid+1], so if we know min must be more than mid, we can safely set it to mid+1. With a function, there certainly can be something between f(mid) and f(mid+1), so no such skipping is possible.

Finally, we have to be careful with the original values of min and max. If you know you are looking for square roots, you know the answer can not be less than zero. You also know that the square root of a number is always** less than the number itself, so we have a viable min and max.

(**) For small numbers, the square root is actually bigger: sqrt(0.01) is 0.1. It is a simple fix: if x<1 then sqrt(x) will be larger than x, so use 1 as the max instead of x.

(*) Of course, it isn’t really “any” function, or part d could not be asked.
(d)
What special condition on the function ‘f’ must be met for your answer to part (c) to work?

It is the same condition as is required for the array version, because of course we are using the same basic algorithm. The data must be ordered or pre-sorted. In an function, this means that the value of the function is always increasing: if x>y then f(x) must be >= f(y).

Putting it in technical terms, it is required that f is monotonic.

It is also important that there is some value we can pick for min and max initially, but that is never a serious problem on a computer. Computers are finite things, there is a minimum and maximum number that can be represented. When all else fails, the hardware min and max can be used.
8. (1%)
Answer ONE of parts (a), (b), or (c); your choice.
(a)
Write a 10,000 word essay in classical Greek, clearly explaining the influence of the Justinian code on late mediæval French legislation, without using any verbs.

(b)
Give a detailed technical description of the construction of a practical solar-powered anti-gravity device.

(c)
Write the number 7 in this box

	
	

.

What a stupid question. I’m not answering it.

