
2:50 pm, Fri 26 October 2007 EEN118 LAB TEN 1

EEN118 LAB TEN
In this lab, you will be performing some important data-processing
operations, specifically sorting a large database file. Sorting data is a
very important operation in computing for many reasons. One of
those reasons is that it makes the data more accessible to humans
once it is printed (imagine trying to use a telephone directory in
which the names do not appear in any particular order). Another rea-
son is that it makes the data more quickly searchable by the computer
(recall the Binary Chop algorithm).

There are four large datafiles to download for this lab. You will
only need the first one unless you get on to the extra credit parts.
They are all available on the class web-site, and are named
database1.txt, database2.txt, database3.txt, and
database10.txt.

Download the file “database1.txt” and use a text editor to take a quick look at it. You
will see that it contains data about a number of people. Each line contains exactly four items: a
person’s social security number, their first name, their last name, and their date of birth. The four
items are separated by spaces, but no item will ever contain a space. Here is a sample from the
middle of the file:

243810667 Chester Peters 19210320
244260287 Lynne Dobson 19781211
244550439 Napoleon Stein 19810110
244940274 Eileen Holloway 19351104
245340593 June Ride 19370522
246230419 Rupert Ogham 19590810
248890854 Christopher Nixon 19510503
250410626 Lars Root 19520508
252190308 Petunia Aspen 19421001
253780249 Otto Osmond 19270802
257390263 Roscoe Smithers 19840718
258080395 Ellery Farmer 19370524
258230892 Calvin Hornswaggle 19431217
259280426 Tammy Moriarty 19490204
259320410 Jim Wilder 19441217
264880013 Azalea Smelley 19740811
266640093 Incitatus Laurel 19720124
267110552 Isaac Mason 19661121

The names are all randomly generated, so there is no confidential data in there. As you may have
noticed, the date of birth is provided as a single integer, in the format yyyymmdd; Chester Peters
was born on the 20th of March 1921.

The file database1.txt contains exactly 1000 lines of data.

30th to 31st October 2007

2:50 pm, Fri 26 October 2007 EEN118 LAB TEN 2

1. Read the Data
Write a program that creates appropriate arrays large enough to hold all the data, then

reads all the data from the file into those arrays. There should be one array for social secu-
rity numbers, another array for first names, another array for last names, and a fourth array
for birth dates. Make your program close the file, then print out the first 10 items of data
from the arrays, so that you can make sure everything was read correctly.

2. Find the Oldest
Modify your program so that after closing the file, instead of printing the first ten items

of data, it searches throught them all to find the oldest person represented. It should print
the social security number, first and last names, and date of birth of the oldest person
found.

Important: Good clean design will make this lab much easier. Write a separate function
that searches the arrays to find the oldest person; do not put all the work in main.

3. Promote the Oldest
For some unfathomable reason, the management wants the oldest person to occupy the

first position in the arrays. Modify your program so that after finding the oldest person, it
swaps his or her data with the data already occupying the first position in the arrays.
Remember that the first position in an array is numbered zero, not one.

4. Now Promote the Second Oldest.
The management has now decided not only that the oldest person must occupy the first

positions in the array, but also that the second-oldest person must occupy the second posi-
tion in the array. So, after searching for the oldest and moving their data to the front of the
array, now search the remainder of the array (all except the first element), and move the
oldest person you find (which must be the second oldest of all) into the second position of
the array. Make sure you swap data, so that whoever was originally in the second position
is not lost.

5. More of the Same.
The management are going to keep on adding requirements like this, next putting the

third-oldest in the third position, then the fourth, then the fifth. There is no knowing when
they will grow out of this petty obsession, so make things easier for yourself. Modify your
search function so that it can be told how much of the array to search. That is, give it two
int parameters (let’s call them a and b); its job is now to search only the portion of the
arrays between position a and position b, to find the oldest person therein. This makes it
very easy to search the remainder of the array to find the second and third oldest.

6. The Ultimate Demand.
Now the management make their final demand. You are to repeat the process of mov-

ing the nth-oldest person into the nth position 1000 times. (remember, 1000 is the number
of data records in the whole file).

2:50 pm, Fri 26 October 2007 EEN118 LAB TEN 3

This will result in the arrays being completely sorted. Do it, and check that it worked.
Make your program print the contents of the four arrays after it has finished. Look at the
output to make sure that everyone is printed in order of their age.

7. Sorting the File.
Once you have sorted the contents of the arrays, it might be a good idea to save the

sorted data in a file. Make your program create a new file, and write all the contents of the
arrays into that file in a sensible format. Use a text editor to look at the file and verify that
it has the same format as the original file, and all the data is properly sorted.

8. (Extra Credit) How Fast Is It?
It is important to know how long computer operations are going to take when they

have to work on a large amount of data. library.h contains two functions:
look_at_the_clock, and double_time. The first of them does exactly what its
name suggests. The second returns the time that was seen when it last looked at the clock,
in seconds, as a double. The time it returns is accurate to about a millisecond. Mysteri-
ously, the time returned is the number of seconds since 7pm on 31st December 1969.

Use this function (twice) to time how long it takes the computer to sort the arrays of
1000 data items. Do not include the time it takes to read the file or the time it takes to write
tyhe new file, just the pure sorting time. Note the time that you observe.

Now you know how long it takes to sort a database of 1000 items. How long do you
think it would take to sort a database of 2000 names? 3000 names? 10,000 names? Think
about those questions, and work out what you believe the answer is. Then find out what
the real answer is. The three other files database2.txt, database3.txt, and
database10.txt contain 2000, 3000, and 10000 data items respectively. If your pro-
gram was nicely written, it will be a few seconds’ work to change the array sizes and make
it read a different file.

See how long it takes to sort these larger files, and compare the results to your predic-
tions. If your predictions weren’t substantially correct, make sure you understand why.
You have just demonstrated a very important phenomenon of computing.

