
ECE 118 LAB TEN

In this lab, you will be performing some important data-processing operations,

specifically sorting a large database file. Sorting data is a very important operation

in computing for many reasons. One of those reasons is that it makes the data more

accessible to humans once it is printed (imagine trying to use a telephone directory

in which the names do not appear in any particular order). Another reason is that it

makes the data more quickly searchable by the computer.

There are many large data files to use for this lab, but you will not need to

down-load them, the files can all be opened directly because you will be working

with Unix on rabbit again.

Important Note
This lab is to be run under a Unix system, not windows. You must also use only the

standard C++ and Unix library files. Do not #include library.h. Try to remember what the

standard includes are, but if you can’t remember, the lab guys will remind you.

Look at the file "/home/118/database1.txt" with a text editor. You will see that it

contains data for a number of people. Each line contains exactly seven items: a person’s first

name, last name, social security number, date of birth (day, month, year), and their secret

password. The seven items are separated by spaces, but no item will ever contain a space.

Here is a sample from near the beginning of the file:

Matilda Vincent 114680858 7 6 1967 2nFeLvBa

Desdemona Hanover 114930037 24 10 1947 wqxEgFJg

Xanadu Perlman 115550206 10 1 1979 KGiXG4gk

Alexander Hall 116520629 21 9 1963 lT8eVxFN

David Lamprey 117050976 16 10 1930 KaPjtehN

Thomas Porlock 119610646 2 2 1965 tEix9RDJ

Cary Cartman 120330928 26 11 1962 lLuRDBZM

Bella Oldman 122460462 11 4 1962 iXQ3ilEQ

Elizabeth Watson 123040628 13 2 1922 jjZDl6gE

Gustav Hornswaggle 123580905 8 3 1923 Ao1y3t5e

Godfrey Tumor 125040813 13 6 1984 4qTwPI8V

Gustav Trentham 125610677 3 9 1958 uNMCWgj4

Justin Oddly 126470499 19 12 1952 n6xw3B1r

Ursula Farnes 127700250 16 6 1930 OQPF9JI2

Betty Eaton 129540334 14 11 1979 ZroC0kni

Maggie McIntosh 130020412 14 11 1936 XXKI1RCe

Raul Kringle 132680826 18 11 1963 OXAHopY0

Arthropod Gravedigger 135040001 27 4 1949 4Cu3b2TY

Aloysius Pornman 135590854 12 10 1956 j7o7gzf1

Alexandra Hanover 136870683 24 12 1952 mOzdv1f9

Tammy Iverson 138350783 18 5 1924 ODG1TtPN

Norbert Pringle 139160698 17 7 1973 T9ESZoE9

Wotan Limburger 139310201 24 12 1973 jS4ph8ht

Bella Fimburg 139480872 5 12 1961 MEu5wz58

Lillian Morlock 139620582 12 6 1929 2zXJQBmx

The real file contains exactly 1000 lines of data.

1. Read the Data

Write a program that creates an array large enough to hold all the data, then reads all the

data from the file into that array. Make it be an array of structs, don't have seven separate

arrays. You will need to define those structs. Make your program close the file, then print out

the first and last 10 items of data from the array, so that you can make sure everything was

read correctly.

2. Basic Search

Make your program ask the user to enter a name. It should then search through the data in

the array (don’t read the file again), finding any entry with a matching name. Correct matches

with either first or last name should be accepted. For every matching entry that is found, print

out all seven data items, everything that is known about each matching person.

Remember that if you use the == operator to compare strings, the test is case-sensitive.

The user (i.e. you) will have to type the name exactly correctly, with capital letters in the right

places. That isn't good. Create a case insensitive string comparing function and use that

instead.

Important: Good clean design is a requirement. Write a separate function that searches the

array, do not put all the work in main.

3. Find the Oldest

Modify your program so that after closing the file, instead of just printing the first ten

items of data, it searches through 1000 of them all to find the oldest person represented. It

should print all seven items for the oldest person. In each file, the oldest person has a fairly

distinctive name, so you’ll have a good clue that you’ve got it right.

Important: As for part two, good clean design is necessary. Write a separate function that

searches the array to find the oldest person, do not put all the work in main.

4. Promote the Youngest

For some unfathomable reason, the management wants the youngest person to occupy the

first position in the array. Give yourself another function, just like the previous one, that finds

the youngest person in the array. Once you know where the youngest person is, you can swap

his or her data with the data already occupying the first position in the array. That way

nothing is lost. Remember that the first position in an array is numbered zero, not one.

5. Now Promote the Second Youngest.

The management has now decided not only that the youngest person must occupy the first

position in the array, but also that the second-youngest person must occupy the second

position in the array. So, after searching for the youngest and moving their data to the front of

the array, now search the remainder of the array (all except the first element), and move the

youngest person you find (which will necessarily be the second youngest of all) into the

second position of the array. Make sure you swap data, so that whoever was originally in the

second position is not lost.

6. More of the Same.

The management are going to keep on adding requirements like this, next putting the third-

youngest in the third position, then the fourth, then the fifth. There is no knowing when they

will grow out of this petty obsession, so make things easier for yourself. Modify your

promotion function so that it can be told how much of the array to search. That is, give it two

int parameters (let’s call them a and b); its job is now to search only the portion of the array

between position a and position b, to find the youngest person therein, and swap that

youngest with whoever is at position a. This makes it very easy to search the remainder of the

array to find the second and third youngest.

7. The Ultimate Demand.

Now the management make their final demand. You are to repeat the process of moving

the nth-youngest person into the nth position 1000 times. (remember, 1000 is the number of

data records in the whole file).

This will result in the array being completely sorted. Do it, and check that it worked.

Make your program print the contents of the array after it has finished. Look at the output to

make sure that everyone is printed in order of increasing age. Of course you are not expected

to inspect all 1000 lines, but don’t just look at the first few either.

8. Sorting the File.

Once you have sorted the contents of the array, it might be a good idea to save the sorted

data in a file. Make your program create a new file, and write all the contents of the array into

that file in a sensible format. Use a text editor to look at the file and verify that it has the same

format as the original file, and all the data is properly sorted.

9. How Fast Is It?

It is important to know roughly how long computer operations are going to take when they

have to work on a large amount of data. The standard Unix functions that give accurate timing

are a little mysterious, so here is a little function that you can just copy and paste into your

program. It requires two extra library files to be included, they are:

#include <time.h>

#include <sys/resource.h>

Here is the function

double get_cpu_time()

{ rusage ruse;

 getrusage(RUSAGE_SELF, &ruse);

 return ruse.ru_utime.tv_sec + ruse.ru_utime.tv_usec / 1000000.0 +

 ruse.ru_stime.tv_sec + ruse.ru_stime.tv_usec / 1000000.0; }

It returns the time as a double, and is accurate to a couple of milliseconds.

Use this function (twice) to time how long it takes the computer to sort the array of 1000

data items. Do not include the time it takes to read the file or the time it takes to write the new

file, just the pure sorting time. Note the time that you observe.

Now you know how long it takes to sort a database of 1,000 items. How long do you think

it would take to sort a database of 2,000 names? 3,000 names? 10,000 names?

Think about those questions, and work out what you believe the answer is. Then find out

what the real answer is. The other files have exactly the same format as database1.txt, but

are longer. Database(N).txt contains N thousand data records. If your program was nicely

written, it will be a few seconds’ work to change the array size and make it read a different

file. These are the files that are available:

/home/118/database1.txt
/home/118/database2.txt
/home/118/database3.txt
/home/118/database5.txt
/home/118/database1O.txt
/home/118/database2O.txt
/home/118/database3O.txt
/home/118/database5O.txt
/home/118/database1OO.txt

See how long it takes to sort these larger files, and compare the results to your predictions.

If your predictions weren’t substantially correct, make sure you understand why. You have

just demonstrated a very important phenomenon of computing. Include your observed times

and conclusions in the document that you submit.

