
EEN118 LAB TEN

In this lab, you will be performing some important data-processing operations,

specifically sorting a large database file. Sorting data is a very important operation in
computing for many reasons. One of those reasons is that it makes the data more
accessible to humans once it is printed (imagine trying to use a telephone directory in
which the names do not appear in any particular order). Another reason is that it
makes the data more quickly searchable by the computer.

There are many large data files to use for this lab, but you will only need the first
one until you get on to the advanced parts. They are all available on the class web-
site, and are named database1.txt, database2.txt, database3.txt, and so on.

You do not need to download the files when you are working on rabbit, as they
are already there if you know where to look. The first one’s full file name is

 /home/www/class/een118/labs/151/database1.txt

Important Note

This lab is to be run under a Unix system, not windows. You must also use only the
standard C++ and Unix library files. Do not #include library.h. Try to remember what
the standard includes are, but if you can’t remember, the lab guys will remind you.

Look at the file "database1.txt" with a text editor. You will see that it contains data

about a number of people. Each line contains exactly five items: a person’s date of birth, their
social security number, their first name, their last name, their state of residence, and zip code.
The six items are separated by spaces, but no item will ever contain a space. Here is a sample
from the middle of the file:

19670607 114680858 Matilda Vincent MI 71971
19471024 114930037 Desdemona Hanover ID 69117
19790110 115550206 Xanadu Perlman ND 13275
19630921 116520629 Alexander Hall SD 95281
19301016 117050976 David Lamprey GA 51190
19650202 119610646 Thomas Porlock IL 82107
19621126 120330928 Cary Cartman NC 91548
19620411 122460462 Bella Oldman SD 95260
19220213 123040628 Ebola Watson NC 91010
19230308 123580905 Gustav Hornswaggle MN 37990
19840613 125040813 Godfrey Tumor OR 55835
19580903 125610677 Gustav Trentham IA 72757
19521219 126470499 Justin Oddly MA 33630
19300616 127700250 Ursula Farnes LA 75289
19791114 129540334 Betty Eaton NH 24573
19361114 130020412 Maggie McIntosh NV 17418
19631118 132680826 Raul Kringle NJ 53022
19490427 135040001 Arthropod Gravedigger ID 69679
19561012 135590854 Aloysius Pornman MO 26236

As you may have noticed, the date of birth is provided as a single integer, in the format
yyyymmdd; Matilda Vincent was born on the 7th of June 1967. The 1 in the filename
people1.txt indicates that it contains exactly one thousand lines.

1. Read the Data

Write a program that creates an array large enough to hold all the data, then reads all the
data from the file into that array. Of course, it will have to be an array of structs that you
will also need to define. Make your program close the file, then print out the first 10 items of
data from the array, so that you can make sure everything was read correctly.

2. Basic Search

Make your program ask the user to enter a name. It should then search through the data in
the array (don’t read the file again), finding any entry with a matching name. Correct matches
for either first or last name should be accepted. For every matching entry that is found, print
out all six data items: the social security number, first and last names, date of birth, state, and
zip code for each matching person.

Remember that if you use the == operator to compare strings, the test is case-sensitive.
The user (i.e. you) will have to type the name exactly correctly, with capital letters in the right
places. If you are feeling adventurous, make a case-insensitive string comparison function.

Important: Good clean design will make this lab much easier. Write a separate function
that searches the array, do not put all the work in main.

3. Find the Extremes

Modify your program so that after closing the file, instead of printing the first ten items of
data, it searches through all of them to find the youngest and oldest people represented. It
should print the social security number, first and last names, date of birth, state, and zip code
of both the youngest and the oldest person found.

Important: As for part two, good clean design will make this lab much easier. Write a
separate function that searches the array to find the youngest person, do not put all the work in
main. A quick copy of that function with a very small change will give you a function for
finding the oldest with almost no effort.

4. Promote the Oldest

For some unfathomable reason, the management wants the oldest person to occupy the
first position in the array. Modify your program so that after finding the oldest person, it
swaps his or her data with the data already occupying the first position in the array.

5. Now Promote the Second Oldest.

The management has now decided not only that the oldest person must occupy the first
position in the array, but also that the second-oldest person must occupy the second position
in the array. So, after searching for the oldest and moving their data to the front of the array,
now search the remainder of the array (all except the first element), and move the oldest
person you find (which must be the second oldest of all) into the second position of the array.
Make sure you swap data, so that whoever was originally in the second position is not lost.

6. More of the Same.

The management are going to keep on adding requirements like this, next putting the third-
oldest in the third position, then the fourth, then the fifth. There is no knowing when they will
grow out of this petty obsession, so make things easier for yourself. Modify your search
function so that it can be told how much of the array to search. That is, give it two int
parameters (let’s call them a and b); its job is now to search only the portion of the array
between position a and position b, to find the oldest person therein. This makes it very easy to
search the remainder of the array to find the second and third oldest.

7. The Ultimate Demand.

Now the management make their final demand. You are to repeat the process of moving
the nth-oldest person into the nth position 1000 times. (remember, 1000 is the number of data
records in the whole file).

This will result in the array being completely sorted. Do it, and check that it worked.
Make your program print the contents of the array after it has finished. Look at the output to
make sure that everyone is printed in order of their age.

8. Sorting the File.

Once you have sorted the contents of the array, it might be a good idea to save the sorted
data in a file. Make your program create a new file, and write all the contents of the array into
that file in a sensible format. Use a text editor to look at the file and verify that it has the same
format as the original file, and all the data is properly sorted.

9. How Fast Is It?

It is important to know how long computer operations are going to take when they have to
work on a large amount of data. The standard Unix functions that give accurate timing are a
little mysterious, so here is a little function that you can just copy and paste into your
program. It requires two extra library files to be included, they are:

#include <time.h>
#include <sys/resource.h>

Here is the function

double get_cpu_time()
{ struct rusage ruse;
 getrusage(RUSAGE_SELF, &ruse);
 return ruse.ru_utime.tv_sec+ruse.ru_utime.tv_usec/1000000.0 +
 ruse.ru_stime.tv_sec+ruse.ru_stime.tv_usec/1000000.0; }

It returns the time as a double, and is accurate to a couple of milliseconds.

Use this function (twice - think about why) to time how long it takes the computer to sort

the entire array. Do not include the time it takes to read the file or the time it takes to write the
new file, just the pure sorting time. Note the time that you observe.

10. Analysis

Now you know how long it takes to sort a database of 1000 items. How long do you think
it would take to sort a database of 2000 items? 3000 items? 10,000 items?

Think about those questions, and work out what you believe the answer is. Then find out
what the real answer is. The other files have exactly the same format as database1.txt, but
are longer. databaseN.txt contains N thousand data records, and N can be 1, 2, 3, 5, 10,
20, 30, 50, or 100. If your program was nicely written, it will be a few seconds’ work to
change the array size and make it read a different file.

See how long it takes to sort these larger files, and plot a graph of the results. The
horizontal axis should be the amount of data, and the vertical axis should be the time it takes.

What do you observe about the graph? What is the mathematical relationship between the
number of items and the time taken? Explain why this is true.

Finally, how long would your program take to sort a database of one million items, if we
had one?

