
EEN118 LAB TEN

In this lab, you will be performing some important data-processing operations,

specifically sorting a large database file. Sorting data is a very important operation
in computing for many reasons. One of those reasons is that it makes the data more
accessible to humans once it is printed (imagine trying to use a telephone directory
in which the names do not appear in any particular order). Another reason is that it
makes the data more quickly searchable by the computer.

There are many large datafiles to use for this lab, but you will only need the
first one until you get on to the advanced parts. They are all available on the class
web-site, and are named people1.txt, people2.txt, people3.txt, people5.txt,
people10.txt, people20.txt, people30.txt, people50.txt, and people100.txt.

You do not need to download the files when you are working on rabbit, as they
are already there if you know where to look. The first one’s full file name is

/home/www/class/een118/labs/people1.txt

Important Note

This lab is to be run under a Unix system, not windows. You must also use only the
standard C++ and Unix library files. Do not #include library.h. Try to remember what the
standard includes are, but if you can’t remember, the lab guys will remind you.

Look at the file "people1.txt" with a text editor. You will see that it contains data

about a number of people. Each line contains exactly five items: a person’s social security
number, their first name, their last name, their date of birth, and state of residence. The five
items are separated by spaces, but no item will ever contain a space. Here is a sample from the
middle of the file:

320990814 Arthur Farmer 19560424 NV
322230050 Eros Crandon 19250819 TX
324640114 Lusitania Lissom 19440104 IN
325400784 Rose Terwilliger 19260122 WI
327640597 Jeffrey Stone 19760801 DE
327950765 Mary Emmett 19290224 CO
328610085 Heironymous Inchworm 19661102 CA
329310410 William McCormick 19550819 WV
329320248 Nicola Birchmore 19230107 IA
330270343 Pauline McTaggart 19290402 MN
331130693 Jim Trombone 19411222 NE
331960453 Abraham Larch 19750901 WY
332040687 Trixie Underwood 19200516 UT
332940674 Alfred James 19820911 WA
334520174 Sherbert Nippy 19320410 MA
334830335 Brent Kline 19360226 SD
335090063 Fetus Rowan 19770919 MN
335220794 Luke Rathbone 19690409 IA

As you may have noticed, the date of birth is provided as a single integer, in the format
yyyymmdd; Arthur Farmer was born on the 24th of April 1956. The 1 in the filename
people1.txt indicates that it contains exactly one thousand lines.

1. Read the Data

Write a program that creates an array large enough to hold all the data, then reads all the
data from the file into that array. Of course, it will have to be an array of structs that you
will also need to define. Make your program close the file, then print out the first 10 items of
data from the array, so that you can make sure everything was read correctly.

2. Basic Search

Make your program ask the user to enter a name. It should then search through the data in
the array (don’t read the file again), finding any entry with a matching name. Correct matches
with either first or last name should be accepted. For every matching entry that is found, print
out all four data items: the social security number, first and last names, and date of birth of
each matching person.

Remember that if you use the == operator to compare strings, the test is case-sensitive.
The user (i.e. you) will have to type the name exactly correctly, with capital letters in the right
places.

Important: Good clean design will make this lab much easier. Write a separate function
that searches the array, do not put all the work in main.

3. Find the Oldest

Modify your program so that after closing the file, instead of printing the first ten items of
data, it searches through all of them to find the oldest person represented. It should print the
social security number, first and last names, date of birth, and state of the oldest person found.

Important: As for part two, good clean design will make this lab much easier. Write a
separate function that searches the array to find the oldest person, do not put all the work in
main.

4. Promote the Oldest

For some unfathomable reason, the management wants the oldest person to occupy the
first position in the array. Modify your program so that after finding the oldest person, it
swaps his or her data with the data already occupying the first position in the array.
Remember that the first position in an array is numbered zero, not one.

5. Now Promote the Second Oldest.

The management has now decided not only that the oldest person must occupy the first
position in the array, but also that the second-oldest person must occupy the second position
in the array. So, after searching for the oldest and moving their data to the front of the array,
now search the remainder of the array (all except the first element), and move the oldest
person you find (which must be the second oldest of all) into the second position of the array.
Make sure you swap data, so that whoever was originally in the second position is not lost.

6. More of the Same.

The management are going to keep on adding requirements like this, next putting the third-
oldest in the third position, then the fourth, then the fifth. There is no knowing when they will
grow out of this petty obsession, so make things easier for yourself. Modify your search
function so that it can be told how much of the array to search. That is, give it two int
parameters (let’s call them a and b); its job is now to search only the portion of the array
between position a and position b, to find the oldest person therein. This makes it very easy to
search the remainder of the array to find the second and third oldest.

7. The Ultimate Demand.

Now the management make their final demand. You are to repeat the process of moving
the nth-oldest person into the nth position 1000 times. (remember, 1000 is the number of data
records in the whole file).

This will result in the array being completely sorted. Do it, and check that it worked.
Make your program print the contents of the array after it has finished. Look at the output to
make sure that everyone is printed in order of their age.

8. Sorting the File.

Once you have sorted the contents of the array, it might be a good idea to save the sorted
data in a file. Make your program create a new file, and write all the contents of the array into
that file in a sensible format. Use a text editor to look at the file and verify that it has the same
format as the original file, and all the data is properly sorted.

9. How Fast Is It?

It is important to know how long computer operations are going to take when they have to
work on a large amount of data. The standard Unix functions that give accurate timing are a
little mysterious, so here is a little function that you can just copy and paste into your
program. It requires two extra library files to be included, they are:

#include <time.h>
#include <sys/resource.h>

Here is the function

double get_cpu_time()
{ struct rusage ruse;
 getrusage(RUSAGE_SELF, &ruse);
 return ruse.ru_utime.tv_sec+ruse.ru_utime.tv_usec/1000000.0 +
 ruse.ru_stime.tv_sec+ruse.ru_stime.tv_usec/1000000.0; }

It returns the time as a double, and is accurate to a couple of milliseconds.

Use this function (twice) to time how long it takes the computer to sort the array of 1000

data items. Do not include the time it takes to read the file or the time it takes to write the new
file, just the pure sorting time. Note the time that you observe.

Now you know how long it takes to sort a database of 1000 items. How long do you think
it would take to sort a database of 2000 names? 3000 names? 10,000 names?

Think about those questions, and work out what you believe the answer is. Then find out
what the real answer is. The other files have exactly the same format as people1.txt, but are
longer. PeopleN.txt contains N thousand data records. If your program was nicely
written, it will be a few seconds’ work to change the array size and make it read a different
file.

See how long it takes to sort these larger files, and compare the results to your predictions.
If your predictions weren’t substantially correct, make sure you understand why. You have
just demonstrated a very important phenomenon of computing.

