
EEN118 LAB EIGHT

This week you are going to make an interactive calculator. It doesn’t have
to be very fancy, just functional. Like the kind you could buy for $10 at
Woolworth's.

1. A Button

Write a function that will draw a single button, of the sort that might be useful for a calculator.
The lab guys will tell you of a trick for getting the labels properly centred.

 We want round buttons, so that they won’t hurt anyone in an accident.

The function should be given parameters to tell it the size of the button and what symbol it should
contain within it. Shade the button and give it an outline just so that it doesn’t look dreadful.

You may like to remember that there is a library function called set_font_size(n). It
selects the size of the font to be used by write_string or write_char so that it will fit neatly
in a box n pixels high. What a coincidence.

2. Some Buttons

Now write a function that draws a whole grid of buttons, as they would appear on a calculator.
Remember to leave space for a numeric display to be added later.

 Your calculator needs to have the operations shown in the diagram.

You are probably wondering just what the fifth column of buttons are supposed to
represent. ↑ stands for “to the power of”, although that isn’t the way it is written in C++, The
other three give the calculator a very basic memory. You can think of it as an extra hidden
variable. © is supposed to clear the memory by setting it to zero (it’s a C inside a zero). Σ is
supposed to add whatever is on the display to the memory value (it’s a greek Sigma, the
mathematical symbol for a sum), and M is supposed to recall the memory value so that it appears
on the display and can be used in the next calculation.

Plan the positions of your buttons carefully so that they fit neatly within the window.
 You should define named constants for the window’s width and height, and calculate button sizes

and positions from those values. Then you will be able to change the size of your calculator at
any time without having to recalculate everything. Eventually you should even make the font
size depend on the window size so that it always looks right, but that will require a little
experimentation.

Take care to ensure that you have a simple regular calculation for the positions of buttons,
otherwise the next step will be unnecessarily complicated.

About special characters.

× and ÷ don’t appear on the keyboard, but don’t let that worry you. A program like word
will allow you to type all sorts of strange symbols (insert → symbol), and once the symbol you
want is in a word document, you can copy and paste it into visual studio. If it’s available, the
windows program “character map” will let you insert the weirdos straight into your C++ without
having to go through word at all.

But beware! Do not use write_string for anything you can’t type normally on the
keyboard. Use write_char instead. It can only print a single character at a time, but it can
print anything. Use it like this:

write_char(L'÷');
That’s right, there is a capital L in there, and there are only single-quotes around the character.
That’s how you type a unicode character constant in C++. Something like this might be even
better:

const int divide_sign = L'÷';
// ... and later ...
write_char(divide_sign);

It is possible for some strange set-up in your computer to stop the unicode characters working in
a program. If that happens, keep the code that didn't work in your program to show that you
really did try, then choose alternative symbols that you can type.

3. Clicking

The graphics library allows your program to detect mouse clicks. This little snippet of code

 wait_for_mouse_click();
 const int x = get_click_x(), y = get_click_y();
 cout << "Mouse clicked at position (" << x << ", " << y << ")\n";

causes a program to wait until the mouse is clicked somewhere within its graphics window, then
report the co-ordinates of the pixel that was clicked on. Try it out. Put that in a loop after you’ve
drawn the grid of buttons, and make sure it does what you would expect.

Now the real task is to convert the pixel co-ordinates to something that represents which
button (if any) the mouse was clicked within. If you chose the same layout of buttons as I did,
and you have a simple calculation for the positions of buttons, this will be easy.

For now, just work out which row and column of buttons the mouse click was in. In the
diagram, the “7” button is in row 1 column 1, and the “×” button is in row 3 column 4. Your
program should be modified so that a mouse click on the “7” button makes it print “clicked
row 1 column 1” and a click on the “×” button makes it print “clicked row 3 column
4”, and so on. Then, don’t forget to check that the click was actually inside the square of the
button.

4. What did you click on?

Now convert that bit of code into a very useful function. Whenever it is called, the function
should wait until the mouse is clicked, and work out which row and column of buttons the click
corresponds to, exactly as before. After that, it should return as its result a value indicating the
label of that button. Perhaps 0 to 9 for the digits, and other numbers for the other symbols.

There is no clever trick to work out for this. Once you know the row and column numbers,
the best plan is probably just to have a bunch of ifs, one for each button, returning the right
label. So if the click was on row 2 column 2, this function should return 5.

Put it all in a little program and test it well.

5. Entering Actual Numbers

Just for now, ignore all the buttons except for the numeric ones and Clear. As each numeric
button is clicked, your program should keep track of the entire number that has been entered (so
if “7” then “4” then “8” are clicked, it should have in its mind the int value 748).

There is an easy way to do this, and it is one of those situations where a variable can be
useful. If your program allows itself to have an int variable that will accumulate a number as it
is entered, this plan will work:

start with the variable set to zero.
repeat this loop:
{ Wait for a button to be pressed.

If it was the “9” button, the multiply the variable by 10 and add 9.
If it was the “8” button, the multiply the variable by 10 and add 8.
If it was the “7” button, the multiply the variable by 10 and add 7,
etc etc etc.
Clear should reset absolutely everything in your program,
 that will make debugging much easier.
Print the new value of the variable. }

6. Calculate!

Make the other buttons do their thing.

Get a clear idea of exactly what should happen when each button is pressed. It is not
complicated, but unless you think it through first, your program might be.

What must happen when you key in the sequence 1 2 3 + 2 1 × 7 5 = for example? It starts
out just reading a number as for part 5, but when the + is entered something extra must happen.
It can’t do the addition just yet, it must read another number first. While the second number is
being read, the calculator must remember what the first number was, and the fact that an addition
is still to be done.

The trick is to give yourself a couple of variables. One remembers the number currently
being read, à la part five. Another remembers the pending operation, +. Another remembers the
old number that has already been entered.

Whenever a non-digit is encountered, if there is a pending operation, it is used to combine
the two numbers to produce a new “old” number. With a few details left for you to work out, it
just continues like that.

Your program should print all the variables after every key click. Then if anything goes
wrong you will already be half way to knowing what is wrong.

7. Finally, an Actual Calculator

There isn’t much to say about the display, just make it always show the current value. The library
function write_string will happily take an int as its parameter.

Test your program carefully, this could be something useful to have. Yes, windows and
everything else comes with a calculator built in, but now you can have a calculator that does
whatever you need it to do, not just what microsoft thinks you need to do. Adding your own
operations is as easy as falling out of a tree.

