
ECE 118 LAB EIGHT

This week you are going to make an interactive calculator.

It doesn’t have to be very fancy, just functional. Like the kind
you could buy for $10.

1. A Button

Write a function that will draw a single button, of the sort that might
be useful for a calculator. Make it stylishly round. You may have to

experiment with the pen position to get the digits properly centred.

The function should be given parameters to tell it the size of the
button and what symbol it should contain within it. Shade the button

and give it an outline just so that it doesn’t look dreadful.
You may like to remember that there is a library function called

set_font_size(n). It selects the font to be used by write_string so

that it will fit neatly in a box n pixels high. What a coincidence.

2. Some Buttons

Now write a function that draws a whole grid of buttons, as they
would appear on a calculator. Remember to leave space for a numeric

display to be added later.

Plan the positions of your buttons carefully so that they fit neatly
within the window. You should define named constants for the

window’s width and height, and calculate button sizes and positions
from those values. Then you will be able to change the size of your

calculator at any time, without having to recalculate everything.
Eventually you should even make the font size depend on the window
size so that it always looks right, but that will require a little

experimentation.
Take care to ensure that you have a simple regular calculation for

the positions of buttons, otherwise the next step will be unnecessarily

complicated.

A note about the special characters × and ÷.

They don’t appear on the keyboard, and the way of typing them
that used to work suddenly doesn’t. The only method I have found is

to copy and paste them from another document, such as this one. To
display them, you have to use the special function write_char, they

must be written as a single character in single quotes preceded by an
L, and if they are stored in a variable, array, or whatever, the

declaration must be int. This shows all of that:

const int buttons[4][4] =
{ { L'7', L'8', L'9', L'+' },
 { L'4', L'5', L'6', L'-' },
 { L'1', L'2', L'3', L'×' },
 { L'c', L'0', L'=', L'÷' } };

void main()
{ make_window(700, 700);
 /* whatever */
 write_char(buttons[3][3]);
 /* whatever */ }

3. Clicking

The graphics library allows your program to detect mouse clicks. This
little snippet of code:

 wait_for_mouse_click();
 const int x = get_click_x(), y = get_click_y();
 cout << "Mouse clicked at position (" << x << ", " << y << ")\n";

causes a program to wait until the mouse is clicked somewhere within

its graphics window, then report the co-ordinates of the pixel that was
clicked on. Try it out. Put that in a loop after you’ve drawn the grid of

buttons, and make sure it does what you would expect.
Now the real task is to convert the pixel co-ordinates to

something that represents which button (if any) the mouse was

clicked within. If you chose the same layout of buttons as I did, and
you have a simple calculation for the positions of buttons, this will be

easy.

For now, just work out which row and column of buttons the
mouse click was in. In the diagram, the “7” button is in row 1 column

1, and the “×” button is in row 3 column 4. So your program should
be modified so that a mouse click on the “7” button makes it print

“clicked row 1 column 1” and a click on the “×” button makes it print

“clicked row 3 column 4”, and so on. Then don’t forget to check that

the click was actually inside the circle of the button.

4. What did you click on?

Now convert that bit of code into a very useful function. Whenever it is

called, the function should wait until the mouse is clicked, and work
out which row and column of buttons the click corresponds to, exactly
as before. After that, it should return as its result a value indicating

the label of that button. Perhaps 0 to 9 for the digits, and other
numbers for the other symbols. A char-typed variable may be helpful.

There is no clever trick to work out for this. Once you know the
row and column numbers, the best plan is probably just to have a
bunch of ifs, one for each button, returning the right label. So if the

click was on row 2 column 2, this function should return ꞌ5ꞌ.

Put it all in a little program and test it well.

5. Almost a calculator

Just for now, ignore the + - × ÷ = buttons, and concentrate only on
the numbers and the Clear button. As each digit button is clicked,

your program should keep track of the entire number that has been
entered (so if ꞌ7ꞌ then ꞌ4ꞌ then ꞌ8ꞌ are clicked, it should have in its

mind the int value 748).
There is an easy way to do this, and it is one of those situations

where a variable is useful. If your program allows itself to have an int

variable, initially set to zero, that will accumulate a number as it is
entered, this plan will work:

repeat this loop:

Wait for a button to be pressed.
If it was the ꞌ9ꞌ button, multiply the variable by 10 and add 9.

If it was the ꞌ8ꞌ button, multiply the variable by 10 and add 8.

If it was the ꞌ7ꞌ button, multiply the variable by 10 and add 7,

etc etc etc.
If you are using a char value, and returning (for example) ꞌ5ꞌ

from the button detector, what you are actually receiving
is an ASCII code, in which the char ꞌ5ꞌ is represented by

the number 53. Subtracting ꞌOꞌ from it will turn it into

the desired number, 5.
Clear should reset absolutely everything in your program, that

will make debugging much easier.
Update the display to show the new value of the variable.

“What display?” you may ask. That of course is what the empty region
at the top of the window is for. The library function write_string will

happily take an int as its parameter.

Make it happen.

6. Finally

Make the other five buttons do their thing.
Get a clear idea of exactly what should happen when each button

is pressed. It is not complicated, but unless you think it through first,

your program might be. You can keep it restricted to just ints, but try

to make it into a sturdy product, one that doesn’t explode if you try to

divide something by zero for instance.

