
EEN118 LAB EIGHT

This week you are going to make an interactive calculator. It doesn’t
have to be very fancy, just functional. Like the kind you could buy for
$10.

1. A Button

Write a function that will draw a single button, of the sort that might be useful for a
calculator. You may have to experiment with the pen position to get the digits
properly centred.

The function should be given parameters to tell it the size of the button and what
symbol it should contain within it. Shade the button and give it an outline just so that
it doesn’t look dreadful.

You may like to remember that there is a library function called
set_font_size(n). It selects the font to be used by write_string or
write_char so that it will fit neatly in a box n pixels high. What a coincidence.

2. Some Buttons

Now write a function that draws a whole grid of buttons, as they would appear on a
calculator. Remember to leave space for a numeric display to be added later.

Plan the positions of your buttons carefully so that they fit neatly within the
window. You should define named constants for the window’s width and height, and

calculate button sizes and positions from those values. Then you will be able to
change the size of your calculator at any time, without having to recalculate
everything. Eventually you should even make the font size depend on the window
size so that it always looks right, but that will require a little experimentation.

Take care to ensure that you have a simple regular calculation for the positions
of buttons, otherwise the next step will be unnecessarily complicated.

A note about special characters.

× and ÷ don’t appear on the keyboard, but don’t let that worry you. A program like
word will allow you to type all sorts of strange symbols (insert → symbol), and once the
symbol you want is in a word document, you can copy and paste it into visual studio. If
it’s available, the windows program “character map” will let you insert the weirdos
straight into your C++ without having to go through word at all.

But beware! Do not use write_string for anything you can’t type normally on
the keyboard. Use write_char instead. It can only print a single character at a time,
but it can print anything. Use it like this:

write_char(L'÷');
That’s right, there is a capital L in there, and there are only single-quotes around the

character. That’s how you type a unicode character constant in C++. Something like this
might be even better:

const int divide_sign = L'÷';
// ... and later ...
write_char(divide_sign);

There is a potential problem. It is possible that for editing your C++ program Visual

Studio will use a font that doesn’t contain all the weird characters. If that happens, it will
give you an odd error message about saving your code, and you will have to use this
work-around instead:

write_char(L'\u2191'); // produces ↑
write_char(L'\u263C'); // produces ☼

If all else fails, you can just pick another character that you like the look of.
The blank buttons at the right or for you to fill with useful operations of your

own choice, some possibilities are R or rnd to produce a random number, ± to switch
the sign, ↑ for to-the-power-of, ! for factorial, ☼ to make the sun shine. It’s up to you,
within reason.

3. Clicking

The graphics library allows your program to detect mouse clicks. This little snippet of
code:

 wait_for_mouse_click();
 const int x = get_click_x(), y = get_click_y();
 cout << "Mouse clicked at position (" << x << ", " << y << ")\n";

causes a program to wait until the mouse is clicked somewhere within its graphics
window, then report the co-ordinates of the pixel that was clicked on. Try it out. Put
that in a loop after you’ve drawn the grid of buttons, and make sure it does what you
would expect.

Now the real task is to convert the pixel co-ordinates to something that
represents which button (if any) the mouse was clicked within. If you chose the same

layout of buttons as I did, and you have a simple calculation for the positions of
buttons, this will be easy.

For now, just work out which row and column of buttons the mouse click was
in. In the diagram, the “7” button is in row 1 column 1, and the “×” button is in row 3
column 4. Your program should be modified so that a mouse click on the “7” button
makes it print “clicked row 1 column 1” and a click on the “×” button makes it
print “clicked row 3 column 4”, and so on. Then, don’t forget to check that the
click was actually inside the square of the button.

4. What did you click on?

Now convert that bit of code into a very useful function. Whenever it is called, the
function should wait until the mouse is clicked, and work out which row and column
of buttons the click corresponds to, exactly as before. After that, it should return as its
result a value indicating the label of that button. Perhaps 0 to 9 for the digits, and
other numbers for the other symbols.

There is no clever trick to work out for this. Once you know the row and
column numbers, the best plan is probably just to have a bunch of ifs, one for each
button, returning the right label. So if the click was on row 2 column 2, this function
should return 5.

Put it all in a little program and test it well.

5. Almost a calculator

Just for now, ignore all the buttons except for the numeric ones and Clear. As each
numeric button is clicked, your program should keep track of the entire number that
has been entered (so if “7” then “4” then “8” are clicked, it should have in its mind
the int value 748).

There is an easy way to do this, and it is one of those situations where a variable
can be useful. If your program allows itself to have an int variable that will
accumulate a number as it is entered, this plan will work:

start with the variable set to zero.
repeat this loop:

Wait for a button to be pressed.
If it was the “9” button, the multiply the variable by 10 and add 9.
If it was the “8” button, the multiply the variable by 10 and add 8.
If it was the “7” button, the multiply the variable by 10 and add 7,
etc etc etc.
Clear should reset absolutely everything in your program, that will make

 debugging much easier.
Print the new value of the variable.

6. Calculators have displays

There isn’t much to say about the display, just make it always show the current value.
The library function write_string will happily take an int as its parameter.

7. Finally

Make the other buttons do their thing.
Get a clear idea of exactly what should happen when each button is pressed. It is

not complicated, but unless you think it through first, your program might be. You
can keep it restricted to just ints, but try to make it into a sturdy product, one that
doesn’t explode if you try to divide something by zero for instance.

8. That’s it.

There is extra credit available for good enhancements, such as decimal points and
extra function keys. You know what calculators are normally capable of. But extra
credit is only given if the basic functionality is working and well designed.

