
EEN118 LAB EIGHT

This week you are going to make an interactive calculator. It doesn’t
have to be very fancy, just functional. Like the kind you could buy for
$10.

1. A Button

Write a function that will draw a single button, of the sort that might be useful for a calculator.
You may have to experiment with the pen position to get the digits properly centred.

The function should be given parameters to tell it the size of the button and what symbol it
should contain within it. Shade the button and give it an outline just so that it doesn’t look
dreadful.

You may like to remember that there is a library function called set_font_size(n). It
selects the font to be used by write_string or write_char so that it will fit neatly in a box
n pixels high. What a coincidence.

2. Some Buttons

Now write a function that draws a whole grid of buttons, as they would appear on a calculator.
Remember to leave space for a numeric display to be added later.

Your calculator needs to have properly square buttons, and at least the operations shown
in the diagram. I’ll explain MC, M+, MR, and B later.

Plan the positions of your buttons carefully so that they fit neatly within the window. You
should define named constants for the window’s width and height, and calculate button sizes
and positions from those values. Then you will be able to change the size of your calculator at
any time, without having to recalculate everything. Eventually you should even make the font
size depend on the window size so that it always looks right, but that will require a little
experimentation.

Take care to ensure that you have a simple regular calculation for the positions of
buttons, otherwise the next step will be unnecessarily complicated.

About special characters.

× and ÷ don’t appear on the keyboard, but don’t let that worry you. A program like word
will allow you to type all sorts of strange symbols (insert → symbol), and once the symbol you
want is in a word document, you can copy and paste it into visual studio. If it’s available, the
windows program “character map” will let you insert the weirdos straight into your C++
without having to go through word at all.

But beware! Do not use write_string for anything you can’t type normally on the
keyboard. Use write_char instead. It can only print a single character at a time, but it can
print anything. Use it like this:

write_char(L'÷');
That’s right, there is a capital L in there, and there are only single-quotes around the character.
That’s how you type a unicode character constant in C++. Something like this might be even
better:

const int divide_sign = L'÷';
// ... and later ...
write_char(divide_sign);

Some PCs, usually those set up with Asian character sets, have trouble with these special
characters. If your computer can’t display them, once the lab guy agrees, you may substitute
easier symbols.

3. Clicking

The graphics library allows your program to detect mouse clicks. This little snippet of code

 wait_for_mouse_click();
 const int x = get_click_x(), y = get_click_y();
 cout << "Mouse clicked at position (" << x << ", " << y << ")\n";

causes a program to wait until the mouse is clicked somewhere within its graphics window,
then report the co-ordinates of the pixel that was clicked on. Try it out. Put that in a loop after
you’ve drawn the grid of buttons, and make sure it does what you would expect.

Now the real task is to convert the pixel co-ordinates to something that represents which
button (if any) the mouse was clicked within. If you chose the same layout of buttons as I did,
and you have a simple calculation for the positions of buttons, this will be easy.

For now, just work out which row and column of buttons the mouse click was in. In the
diagram, the “7” button is in row 1 column 1, and the “×” button is in row 3 column 4. Your
program should be modified so that a mouse click on the “7” button makes it print “clicked
row 1 column 1” and a click on the “×” button makes it print “clicked row 3 column
4”, and so on. Then, don’t forget to check that the click was actually inside the square of the
button.

4. What did you click on?

Now convert that bit of code into a very useful function. Whenever it is called, the function
should wait until the mouse is clicked, and work out which row and column of buttons the
click corresponds to, exactly as before. After that, it should return as its result a value
indicating the label of that button. Perhaps 0 to 9 for the digits, and other numbers for the other
symbols.

There is no clever trick to work out for this. Once you know the row and column
numbers, the best plan is probably just to have a bunch of ifs, one for each button, returning
the right label. So if the click was on row 2 column 2, this function should return 5.

Put it all in a little program and test it well.

5. Entering Actual Numbers

Just for now, ignore all the buttons except for the numeric ones and Clear. As each numeric
button is clicked, your program should keep track of the entire number that has been entered
(so if “7” then “4” then “8” are clicked, it should have in its mind the int value 748).

There is an easy way to do this, and it is one of those situations where a variable can be
useful. If your program allows itself to have an int variable that will accumulate a number as it
is entered, this plan will work:

start with the variable set to zero.
repeat this loop:
{ Wait for a button to be pressed.

If it was the “9” button, the multiply the variable by 10 and add 9.
If it was the “8” button, the multiply the variable by 10 and add 8.
If it was the “7” button, the multiply the variable by 10 and add 7,
etc etc etc.
Clear should reset absolutely everything in your program,
 that will make debugging much easier.
Print the new value of the variable. }

6. Calculate!

Make the other buttons do their thing.

Get a clear idea of exactly what should happen when each button is pressed. It is not
complicated, but unless you think it through first, your program might be.

What must happen when you key in the sequence 1 2 3 + 2 1 × 7 5 = for example? It
starts out just reading a number as for part 5, but when the + is entered something extra must
happen. It can’t do the addition just yet, it must read another number first. While the second
number is being read, the calculator must remember what the first number was, and the fact
that an addition is still to be done.

The trick is to give yourself a couple of variables. One remembers the number currently
being read, à la part five. Another remembers the pending operation, +. Another remembers
the old number that has already been entered.

Whenever a non-digit is encountered, if there is a pending operation, it is used to
combine the two numbers to produce a new “old” number. With a few details left for you to
work out, it just continues like that.

Your program should print all the variables after every key click. Then if anything goes
wrong you will already be half way to knowing what is wrong.

7. An Actual Calculator

There isn’t much to say about the display, just make it always show the current value. The
library function write_string will happily take an int as its parameter.

Test your program carefully, this could be something useful to have. Yes, windows and
everything else comes with a calculator built in, but now you can have a calculator that does
whatever you need it to do, not just what microsoft thinks you need to do.

8. Finally, the Special Buttons

The CM, M+, and MR buttons control a hidden (i.e. not displayed) memory variable .

CM (clear memory) sets it to zero, M+ adds the currently displayed value to the memory, and
MR (memory recall) replaces the displayed value with the memory value, as though you had
just entered it on the numeric keys. This allows a previously calculated value to be used again.

The B button has no effect on any calculations or the values stored, it just changes the
way results are displayed. Normally of course, the display is in Decimal. But if you press the B
button, the display should switch to Hexadecimal (base 16). Each time you press B, the display
switches back and forth between base 10 and base 16.

