
EEN118 LAB FIVE

The purpose of this lab is to give you more practice with nice clean

structured designs. Make absolutely sure your programs are very clear and
obviously correct even to a reader who doesn’t know what your design
plan was. Grading will be on this basis.

The first two parts should be very fast. Remember the % operator. If
you find that parts 1 or 2 are taking more than just a few minutes to work
out, ask the Lab Guy for a hint. You have probably just not realised what
an easy thing to do it really is.

1. What Time Is It?

The library contains functions called get_clock_time and get_calendar_date.
They both take no parameters and return an integer as their results. The first tells you
the time of day, hours, minutes, and seconds, squeezed into six digits: at exactly 4:20
p.m. the value would be 162000. The second tells you the date, year, month, and day,
squeezed into eight digits: on the 26th of February 2019 the value would be 20190226.

Write a simple program that obtains the current year, month, day, hour, and minute as
separate integers. After a little calculation, your program should contain these five
lines or something very much like them:

print(" year: "); print(year); newline();
print(" month: "); print(month); newline();
print(" day: "); print(day); newline();
print(" hour: "); print(hour); newline();
print("minute: "); print(minute); newline();

when run, it should produce output looking something like this:

 year: 2O25
 month: 9
 day: 23
 hour: 16
minute: 2O

but with the correct numbers of course.

Consider for a moment what very rare problem could possibly occur if you start to
run your program just a tiny fraction of a second before midnight. What could your
program do guard against that problem?

2. The Monroe Doctrine.

Who uses the continental clock? Everyone knows hours are supposed to range from 1
to 12, not zero to 23. Modify your program so that the hour is reduced to the proper 1
to 12 range, but make it also note whether the time is “a.m.” or “p.m.”.

And give it a nicer format, printing the date as YYYY-MM-DD, and the time on one
line too, like this:

 date: 2O25‐O9‐23
 time: 4:2O p.m.

(The Monroe doctrine was the early 19th Century U.S. policy, introduced by President
James Monroe, intending to remove the European influence from North America. I’m
sure you already knew that, and how well it worked.)

3. A Clock Face.

Create a window slightly taller than it is
wide, and draw a large circle exactly
centred within it. Make twelve marks
regularly spaced around it near the edge,
so that it can act as a clock face.

You don’t need to duplicate this
sample, it is just there to make the plan
clear.

4. A Whole Clock

Making use of your programming for parts 1 and 2, draw hands on your clock at the
correct positions for the current time of day. A little trial-and-error experimentation
may be needed to get things just right.

A hint towards correctness:
The time is 3:57, so the

hour is 3, but where should the
hour hand be pointing?

5. Add a Second Hand and Animate Your Clock.

Make your clock actually run, so that it keeps updating itself to show the correct time
continuously for as long as you let the program run. You really need a second hand,
with just hour and minute hands it gets really boring watching for long enough to
know that it moves correctly.

6. A Complete Product.

This is why the window isn’t square.

Use the space above and below the clock to display the time and date in a nice
human-friendly way, like you see below. Sadly there is no good way to get the text
nicely centred. I'll try to remember to add that to library.h, but I don't want everyone
to have to re-download it.

You have already seen the write_string function, but you may not have noticed
that it doesn’t only display strings, it will happily render ints and doubles:
whatever you throw at it. The date was produced by four separate calls to
write_string: one for the “23”, one for the “rd”, one for the “September”, and one for
the 2025

What are you going to do to ensure that 1405 is displayed as 2:05, and not 2:5?

