
EEN118 LAB FIVE

The purpose of this lab is to give you more practice with nice clean

structured designs. Make absolutely sure your programs are very clear and

obviously correct even to a reader who doesn’t know what your design

plan was. Grading will be on this basis.

The first two parts should be very fast. Remember the % operator. If

you find that parts 1 or 2 are taking more than just a few minutes to work

out, ask the Lab Guy for a hint. You have probably just not realised what

an easy thing to do it really is.

1. What Time Is It?

The library contains functions called get_clock_time and get_calendar_date.

They both take no parameters and return an integer as their results. The first tells you

the time of day, hours, minutes, and seconds, squeezed into six digits: at 43 seconds

past 4:20 p.m. the value would be 162043. The second tells you the date, year, month,

and day, squeezed into eight digits: on the 21st of September 2023 the value would be

20230921.

Write a simple program that obtains the current year, month, day, hour, and minute as

separate integers. After a little calculation, your program should contain these five

lines or something very much like them:

print(" year: "); print(year); new_line();
print(" month: "); print(month); new_line();
print(" day: "); print(day); new_line();
print(" hour: "); print(hour); new_line();
print("minute: "); print(minute); new_line();
print("second: "); print(second); new_line();

when run, it should produce output looking something like this:

 year: 2O23
 month: 9
 day: 21
 hour: 16
minute: 2O
second: 43

but with the correct numbers of course.

Consider for a moment what very rare problem could possibly occur if you start to

run your program just a tiny fraction of a second before midnight. What could your

program do guard against that problem?

2. The Monroe Doctrine.

Who uses the continental clock? Everyone knows hours are supposed to range from 1

to 12, not zero to 23. Modify your program so that the hour is reduced to the proper 1

to 12 range, but make it also note whether the time is “a.m.” or “p.m.”.



Two little functions, one that takes the raw hour number (0 - 23) and returns the

correct 1 - 12 number, and one that also takes the raw hour number but returns the

correct "a.m." or "p.m." string, are a very easy way to do this.

 year: 2O23
 month: 9
 day: 21
period: p.m.
 hour: 4
minute: 2O
second: 43

(The Monroe doctrine was the early 19th Century U.S. policy, introduced by President

James Monroe, intending to remove the European influence from North America. I’m

sure you already knew that.)

3. A Clock Face.

Create a window slightly taller than it is

wide, and draw tick marks on it for the

minutes and hours of a clock face.

 We don’t want a solid circle, just the

dashes big and small floating there. It’s

very modern.

 The way to draw these marks is a lot

like the way to draw an ordinary circle,

just a little bit more complicated. Think

about how to draw lines radiating all the

way out from the centre, then think about

how to make them begin further away.

4. A Whole Clock

Draw hands on your clock at the correct positions for the current time of day. A little

trial-and-error experimentation may be needed to get things just right. We need all

three hands, hour, minute, and second.

A hint towards correctness:

If the time is 3:57:24, the

hour is 3, but where should the

hour hand be pointing?



5. Animate Your Clock.

Make your clock actually run, so that it keeps updating itself to show the correct time

continuously for as long as you let the program run. This works if you repeatedly go

through these four steps: look at the time, draw the hands in black, wait for a

moderate fraction of a second so it can be seen, and finally draw the hands in white.

The function call wait(0.15) will cause a pause for 0.15 seconds.

6. A Complete Product.

This is why the window isn’t square.

Use the space above and below the clock to display the time and date in a nice

human-friendly way, like you see below. Don’t go overboard with detail, but try to

make it look nice.

You have already seen the write_string function, but you may not have noticed

that it doesn’t only display strings, it will happily render ints and doubles:

whatever you throw at it. The date was produced by six separate calls to write_string:

one for the 21, one for the “st”, one for a space, one for the “September”, one for

another space, and one for the 2023. I used set_font("Arial", n), where n is the

desired font size before any write_strings. You may see a little flicker

occasionally. That can usually be fixed by adjusting the pause length, but don't let it

bother you too much.

What are you going to do to ensure that 1405 is displayed as 2:05, and not 2:5?

