
EEN118 LAB THREE 
 

 
The purpose of this lab is to ensure that you are confident with - and have had 

a lot of practice at - writing small clear functions that give precise control over 
repetitive tasks. The lab is divided into three almost independent sections. Be 
careful that you don’t ruin the work you did for one section while you are 
working on the next. 

 
Section A - Conversions 

A1. Remembering how to start 
 

Remind yourself of how to write the most basic repetitive function of all, one that 
takes two parameters, A and B, and just prints all the numbers from A to B inclusive. 
This will be the starting point for everything this week, so type it in, and make 
absolutely sure that you have got it right, and it really works. 
 

A2. Exotic Canada 
 

You could adapt that function to count differently. Make a new version of it that 
counts in steps of five, so that if you said “numbers(10, 90);” in main, your 
program would print 10 15 20 25 30 ... 85 90. Test it, make sure you got it 
right. 

Now imagine that you are taking a trip to some wild and exotic part of the world 
where they use the metric system. Canada perhaps. You’ll be driving, and don’t want 
to get a ticket for going too slow, so you want a conversion table to translate miles per 
hour into kilometres per hour. One mile is 1.609344 km. 

Adapt your function so that it doesn’t just print numbers, but prints mph to kph 
conversions instead. Where it used to print X, it should now print X mph is Y kph. 
The first few lines of output would look something like this 

10 mph is 16 kph. 
15 mph is 24 kph. 
20 mph is 32 kph. 
25 mph is 40 kph. 

But there’s a complication. You will also be visiting the Mayor of Toronto, and he 
likes to measure speed in miles per minute (not grams as you may have thought). So 
what you need is a three way conversion like this. 

10 mph is 16 kph or 0.17 mpm. 
15 mph is 24 kph or 0.25 mpm. 
20 mph is 32 kph or 0.33 mpm. 
25 mph is 40 kph or 0.42 mpm. 

 
You are probably seeing some ugly output now, with lots of distracting extra 

digits. When a program calculates (for example) 10*1.609344, it gets a very 
accurate result, 16.093444). Usually, precision is what you want, but in this case it 
doesn’t help. To throw away all the digits after the decimal point, and reduce the 
value to an int, the C++ expression is 

(int)(10*1.609344) 



Yes, you do need all those brackets, and of course it works for all numbers with 
decimal points in them, not just 10*1.609344. It is even better if you round the 
result to the nearest int. The trick for that is 

(int)(10*1.609344 + 0.5) 
which works for all positive values. 

But that makes sense only for kilometres per hour. Kilometres are close enough to 
miles that we don’t want to see any digits after the decimal point. Miles per minute 
are another thing altogether. We want exactly two digits after the point. You can 
probably work out how to reach that goal. 
 
  

 
 

Section B - ASCII Art 
B1. Stars 

 

Go back to your basic counting function from A1, and this time adapt and adopt it in 
a different way. Make a function that has one parameter N, which just prints a row of 
N stars. That’s it, nothing complicated, stars(7) should just print “*******”. 

Your function in A1 had two parameters, but this time we want a function that has 
only one parameter. 

 
B2. Spaces 

 

Now make another function almost identical to that, but it should print spaces instead 
of stars. spaces(7) should just print seven spaces. How are you going to test it? If 
you just print spaces, you don’t see anything. 

 
B3. Stars and Spaces 

 

Now make another function that takes two parameters A and B, and prints A spaces 
followed by B stars followed by a new line. spacesstars(3, 4) should just 
print “   ****”.  Remember that having functions that use other functions to do 
most of their work is a good design technique. 

 
B4. Another adaptation 

 

Thinking about how you controlled repetition so far, write yet another function that 
takes two parameters A and B. This one should count down from A to 1, and at the 
same time count up from B in steps of 2. That sounds pointlessly complicated, but 
one little example will make it clear: sequence(5, 1) should print 

5  1 
4  3 
3  5 
2  7 
1  9 

 
 
 



B5. Combining 
 

Still remembering the idea of little functions using other little functions to do their 
jobs, write another function just like sequence, except that it doesn’t print the 
numbers, it uses them as parameters to spacesstars. This new function will draw 
triangles: as an example triangle(5, 1) should print 

 

     * 
    *** 
   ***** 
  ******* 
 ********* 

Not very spectacular I admit, but it’s all good practice. 
 
 

Section C - Circles 
C1. A circle 

 

One way to draw an approximate circle is to draw a straight line a short distance, then 
turn a small amount to the right. Repeat that so many times that all the turns add up to 
360 degrees, and you’ll be back at the starting point. If the steps are small enough, 
nobody will be able to tell the difference between that and an exact circle. Computer 
monitors aren’t really very sharp, so the steps don’t need to be really really small, just 
small. 
 
Do it. Write a function that draws a circle. You should be able to control the size of 
the circle by altering its parameters. 
 
This is how you get the most accurate value for pi in C++: 
 

const double pi = acos(-1.0); 
 

C2. Weaponising 
 

Now your circle is going to be the wheel of a cannon. 
   

Given the position of the bottom of the wheel and the 
aiming angle (x, y, a), you should be able to make a simple 
cannon anywhere, aiming at any angle you want, such as 30 
degrees (from vertical, shown to the left) or 75 degrees 
(below). 

 

   
 

If you need some help with to get the shape right, there are some formulas on the next pages.



That’s the END of the lab. The rest is just if you need a bit of help with the shape: 
 

This is the cannon sitting on a wheel. The wheel’s radius is r. 

 
a is the aiming angle. 
L1 is the distance from the back of the cannon to the wheel’s axle, L2 is the rest of the 
length. 
Like all cannons it is wider at the back (w1) than the front (w2). 

 
 

G is the point on the ground where the wheel rests. Its coordinates are (xg, yg). 
C is the exact position of the axle, its coordinates are (xc, yc). 
P is the easiest point to start drawing the body of the cannon from, coordinates (xp, yp). 
E is the point where the ball pops out when it is fired, coordinates (xe, ye). 



 
This is a simplified picture of the body of the cannon shown with its “bounding box”. 
The point is to illustrate the difference between the real length of the cannon (len) and 
the sum L1+L2. 
 
The angle shown as b is also helpful when drawing the shape. When the cannon is 
aimed at angle a, the heading for the bottom line is (a-b). Don’t forget that all angles are 
computed in radians. 
 

xc = xg 
yc = yg - r 
 
b = asin((w1-w2)/2/(L1+L2)) 
 
xp = xc - L1 * sin(a-b) 
yp = yc + L1 * cos(a-b) 
 
len = (L1+L2) * cos(b) 

 
Finally, to find the point E, we need two extra values: 
 d is the distance between points P and E 
 g is the angle from point P to point E if the cannon lies flat as in the third diagram. 
 

d = sqrt(len*len + w1*w1/4) 
g = asin(w1/2/d) 
 
xe = xp + d * sin(a-g) 
ye = yp - d * cos(a-g) 

 
 
 

 
 

 


