
4:08 pm, Sun 26 November 2000 EEN118 LAB TWELVE 1

EEN118 LAB TWELVE
A few weeks ago, in lab ten, you wrote a program that lets a

human user control the computer’s exploration of a maze. Today you
will be experimenting with auomatic exploration, the beginning of
artificial intelligence. It is perfectly acceptable to modify and re-use
any of the programs you may already have written. This lab also
gives you a little experience of programming with objects.

1. Make sure it Still Works.

You should already have a program that reads in a maze as illustrated below (height, width,
starting row, starting column, then the maze picture), and draws it using the graphics.h library
functions. Make sure that you remember how it works.

Example maze in the style of lab ten:

10
20
1
1
XXXXXXXXXXXXXXXXXXXX
X X XX X
X XX XX XXX X X X
X X XX X X XX X X
XX X XXX XX X
XX XXXXXX XXXXX X
X XX XXXX XX
XXXXXX XX XXX XX
X XX X
XXXXXXXXXXXXXXXXXXXX

However, this week, the maze descriptions will be slightly different. The input will consist
of the maze-picture alone, no numbers. The program will have to work out how big the maze is
for itself. That is actually quite easy, and because you have already programmed something very
much like it before, I’ll give you most of the program here:

#include <vital.h>

struct mazedata
{ int map[50][50];
 int rows, cols; };

That definition creates a new kind of object, called a “mazedata”. Any mazedata variable
will have three components called “map”, “rows”, and “cols”. Grouping them into a single
object makes it convenient and efficient to pass all the information about a maze into a function
with a single parameter. I hope you remember all that from class. Note how the function read-
maze (below) is defined. It only has one parameter, but that parameter is a whole mazedata
object, so all three components are received at once. Remember that the & in front of the parame-
ter’s name) which makes it into a Reference Parameter) is needed if the function is allowed to
modify the parameter, but it also improves efficiency.

Monday Sections HX, KX 27 November 2000

Thursday Section RY 30 November 2000

4:08 pm, Sun 26 November 2000 EEN118 LAB TWELVE 2

void read_maze(mazedata &m)
{ m.rows=0; m.cols=0;
 int r, c;
 for (r=0; r<50; r+=1)
 { for (c=0; c<50; c+=1)
 { m.map[r][c]=-1; } }
 for (r=0; r<50; r+=1)
 { string s=read_line();
 int linelength=s.length();
 if (linelength==0) break;
 m.rows+=1;
 if (linelength>m.cols) m.cols=linelength;
 for (c=0; c<linelength; c+=1)
 { if (s[c]==' ')
 { m.map[r][c]=0; } } } }

The ints stored in a mazedata’s map component are 0 for an open space, and -1 for a solid
wall. The function first fills the map with solid wall so that there can be no accidental gaps, then it
reads the picture line by line. If you have read a string into a variable called s, then
s.length() tells you how many characters are in that string (i.e. its length). This function uses
a blank line to signify the end of the maze picture; blank lines have a length of zero.

The read_maze function works out the size (rows, cols) of the maze as it reads it. After
each line is successfully read, rows is incremented, and cols is set to the length of the longest
line seen so far. The function scans through each line, storing a zero in the maze’s map every time
it sees a blank space.

The print_maze function below could be used to test the program, but is not really good
enough. We really want to be using proper graphics:

void print_maze(const mazedata &m)
{ int r, c;
 for (r=0; r<m.rows; r+=1)
 { for (c=0; c<m.cols; c+=1)
 { if (m.map[r][c]==0)
 print(".");
 else
 print("*"); }
 newline(); } }

void main(void)
{ mazedata X;
 read_maze(X);
 print("This is the maze that I read:"); newline();
 print_maze(X); }

Remember that an ampersand “&” in front of a parameter’s name makes a reference parameter.
References make it efficient to pass large objects (such as whole mazes) into a function, and also
make it possible to modify the parameter. If we want the extra efficiency, but don’t want the mod-
ifiablilty (to ensure that the parameter can not be accidentally modified), the special word const
is used.

You must now modify this function (or write a whole new one of your own if you prefer).
Your function should be able to read a maze as shown in the example below. The maze picture
contains four different characters: ‘X’ represents solid wall, space represents open space, ‘A’ rep-

4:08 pm, Sun 26 November 2000 EEN118 LAB TWELVE 3

resents your starting position in the maze, and ‘B’ represents the position you are trying to get to.
As you read the maze, you should note the positions of the ‘A’ and the ‘B’, but do not record them
in the array; they should be treated as open spaces. It would be a good idea to add four new integer
variables to the mazedata object, Arow, Acol, Brow, Bcol.

Test your program by making it print the maze immediately after reading it (but using differ-
ent characters to represent walls and spaces, so you can be sure the program is really doing some-
thing and not just echoing what it reads), together with a report on the positions of the A and B.

Example Input: Corresponding Output:
XXXXXXXXXXXXXXXXXXXX ********************
X X XXBX X *.......*.....**.*.*
X XX XX XXX X X X *.**.**.***.*..*...*
X X XX X X XX X X *..*.**.*.*.**...*.*
XX X XXX XX X **.*........***.**.*
XX XXXXXX XXXXX X **.******.*****....*
X XX XXXX XX *......**....****.**
XXXXXX XX XXX XX ******..**.***....**
X A XX X *..............**..*
XXXXXXXXXXXXXXXXXXXX ********************
 start(A) row 8 col 4
 end(B) row 1 col 16

Remember that it is traditional in C++ to start counting at 0, so row 1 is really the second row
from the top, and column 16 is really the 17th column.

2. Rendering the Maze.
Here is the definition of draw_block(), from lab ten.

void draw_block(int col, int row, int numcols, int numrows)
{ window.fillarea(col*width/numcols, row*height/numrows,
 width/numcols-1, height/numrows-1); }

This function assumes that the width and height of the window in which we are drawing the
maze are defined as global constants. Remember that the coordinates of the maze start at (0,0) (so
that (1,5) refers to what you would normally think of as the second column of the sixth row).

Adapt your draw_maze() function from lab ten so that it can be used with the new maze
structure, and correctly draw the maze it represents, with a special shape or symbol indicating the
position of the explorer (initially the same as the position of the A) and the explorer’s target (the
position of the B). Using different colours is probably easier than drawing different shapes.

3. An Unintelligent Robot.
Make your explorer automatically explore the maze. Don’t bother with any hint of intelli-

gence yet, just get him moving around. Recall from class that the simplest way to explore any
kind of map is with a little recursive function. In order to explore from a particular location, you
find all the other locations that can be reached directly from it (in this case, that is any of the four
immediate neighbours that are not solid wall), and (recursively) explore from each of them.

Every time your program starts to explore from a new location, it should update the graphics
display so that you can actually see the explorer moving around. Important : remember that you
must use window.update() and the delay(1.0) function to make the program pause for a
second or so after each change, or you’ll never see anything. Don’t worry that your program never
terminates, just use control-C to stop it after a while.

4:08 pm, Sun 26 November 2000 EEN118 LAB TWELVE 4

4. An More Intelligent Robot.
You almost certainly noticed that after a very short while your explorer gets stuck in a rut,

just going backwards and forwards between a few (probably only two) locations. This is because
it has no memory of where it has been before, so can’t possibly avoid following the same path
every time.

Give your robot a memory. It should always know how many steps away from its starting
point it is (if you are using a recursive exploring function this is very easy. Distance from home
should be a parameter to the exploring function, and with every recursive call it should be incre-
mented. Returning from the recursions will naturally decrement the parameter at the right time).
Every time it goes to a new space, it should record how far from home it is, and it should never re-
visit a space that it has already found a shorter path to. This is exactly the same as the “shortest
route between two cities” algorithm we investigated in class.

This is a bit tricky. Expect to spend some time making this part work properly.
If you get it right, you will find that your explorer re-explores parts of the maze quite a large

number of times (each time it finds a slightly shorter route to a place it has already visited, it will
have to revisit that place and everywhere else reached through it). While you are experimenting
you will definitely want to be working with a much smaller maze than the example provided ear-
lier.

5. Verification.
Make the program tell you the length of the shortest route between the start and end posi-

tions (A and B) once it has completed its explorations. That way you can check that it is correct.
Try to find a way to draw the exact route (think of how we did it for the road map in class) in a
human-friendly manner.

6. Anything Else.
Once you have got the robot automatically exploring the whole maze, you can easily make

all sorts of other things happen. Try putting some other robots in, perhaps searching for the same
target. Perhaps the robots are not friendly with each other. Use your imagination and try to make
an interesting program.

