	Planet
	Length of Year

(in Earth days)
	Distance from Sun

(in millions of miles)

	Venus
	223
	67

	Earth
	365
	93

	Mars
	686
	142

	Jupiter
	4329
	484

Kepler’s formula, adjusted to these units, is

6y2 (d3.

#include “library.h”

void kepler_test(int y, int d)

{ print(" When the year (Y) is ");

 print(y);

 print(" days long,");

 newline();

 print(" and the distance to the sun (D) is ");

 print(d);

 print(" million miles,");

 newline();

 print(" six times Y squared is ");

 print(6*y*y);

 print(" and D cubed is ");

 print(d*d*d);

 newline(); }

void main(void)

{ kepler_test(223, 67);

 kepler_test(365, 93);

 kepler_test(686, 142);

 kepler_test(4329, 484); }

output produced

 When the year (Y) is 223 days long,

 and the distance to the sun (D) is 67 million miles,

 six times Y squared is 298374 and D cubed is 300763

 When the year (Y) is 365 days long,

 and the distance to the sun (D) is 93 million miles,

 six times Y squared is 799350 and D cubed is 804357

 When the year (Y) is 686 days long,

 and the distance to the sun (D) is 142 million miles,

 six times Y squared is 2823576 and D cubed is 2863288

 When the year (Y) is 4329 days long,

 and the distance to the sun (D) is 484 million miles,

 six times Y squared is 112441446 and D cubed is 113379904

A slightly nicer version

#include “library.h”

void kepler_test(string name, int y, int d)

{ print(name);

 print(“:”);

 newline();

 print(" When the year (Y) is ");

 print(y);

 print(" days long,");

 newline();

 print(" and the distance to the sun (D) is ");

 print(d);

 print(" million miles,");

 newline();

 print(" six times Y squared is ");

 print(6*y*y);

 print(" and D cubed is ");

 print(d*d*d);

 newline(); }

void main(void)

{ kepler_test(“Venus”, 223, 67);

 kepler_test(“Earth”, 365, 93);

 kepler_test(“Mars”, 686, 142);

 kepler_test(“Jupiter”, 4329, 484); }

output produced

Venus:

 When the year (Y) is 223 days long,

 and the distance to the sun (D) is 67 million miles,

 six times Y squared is 298374 and D cubed is 300763

Earth:

 When the year (Y) is 365 days long,

 and the distance to the sun (D) is 93 million miles,

 six times Y squared is 799350 and D cubed is 804357

Mars:

 When the year (Y) is 686 days long,

 and the distance to the sun (D) is 142 million miles,

 six times Y squared is 2823576 and D cubed is 2863288

Jupiter:

 When the year (Y) is 4329 days long,

 and the distance to the sun (D) is 484 million miles,

 six times Y squared is 112441446 and D cubed is 113379904

A handy little trick
#include “library.h”

void kepler_test(string name, int y, int d)

{ print(name);

 print(“:\n”);

 print(" When the year (Y) is ");

 print(y);

 print(" days long,\n");

 print(" and the distance to the sun (D) is ");

 print(d);

 print(" million miles,\n");

 print(" six times Y squared is ");

 print(6*y*y);

 print(" and D cubed is ");

 print(d*d*d);

 newline(); }

void main(void)

{ kepler_test(“Venus”, 223, 67);

 kepler_test(“Earth”, 365, 93);

 kepler_test(“Mars”, 686, 142);

 kepler_test(“Jupiter”, 4329, 484); }

output produced

exactly the same of course.
The point?
It is very annoying to have to use newline(); so much, but it is hard to avoid without this trick. You can’t put actual ENTERs in a literal string, not only would it look silly, but the compiler would give you a hard time too. If you want to print a poem for example,

print(“Three things are certain:

Death, taxes, and lost data.

Guess which has occurred.
”);

(that is a prize-winning haiku error message)

It just looks wrong. The special diglyph \n is a two-character code for a single character, “newline”, often also called ENTER. It makes the un-typable typable.

print(“Three things are certain:\nDeath, taxes, and lost data.\nGuess which has occurred.\n”);

Although it is not a good idea to make lines too long. Perhaps:
print(“Three things are certain:\n”);

print(“Death, taxes, and lost data.\nGuess which has occurred.\n”);
A more informative Test
#include “library.h”

void check_accuracy(int a, int b)

{ print(" accuracy is ");

 print(100*a/b);

 print(" percent\n"); }

void kepler_test(string name, int y, int d)

{ print(name);

 print(“:\n”);

 print(" When the year (Y) is ");

 print(y);

 print(" days long,\n");

 print(" and the distance to the sun (D) is ");

 print(d);

 print(" million miles,\n");

 print(" six times Y squared is ");

 print(6*y*y);

 print(" and D cubed is ");

 print(d*d*d);

 newline();

 check_accuracy(6*y*y, d*d*d); }

void main(void)

{ kepler_test(“Venus”, 223, 67);

 kepler_test(“Earth”, 365, 93);

 kepler_test(“Mars”, 686, 142);

 kepler_test(“Jupiter”, 4329, 484); }

output produced

Venus:

 When the year (Y) is 223 days long,

 and the distance to the sun (D) is 67 million miles,

 six times Y squared is 298374 and D cubed is 300763

 accuracy is 99 percent

Earth:

 When the year (Y) is 365 days long,

 and the distance to the sun (D) is 93 million miles,

 six times Y squared is 799350 and D cubed is 804357

 accuracy is 99 percent

Mars:

 When the year (Y) is 686 days long,

 and the distance to the sun (D) is 142 million miles,

 six times Y squared is 2823576 and D cubed is 2863288

 accuracy is 98 percent

Jupiter:

 When the year (Y) is 4329 days long,

 and the distance to the sun (D) is 484 million miles,

 six times Y squared is 112441446 and D cubed is 113379904

 accuracy is -14 percent

