
2005-02-14

String Samples

#include <string>

Be careful, don’t use <string.h> instead, it is a completely different thing.

Declaring a variable, function, parameter, or constant is nothing special, for example:

string name;

string NameOfMonth(int m);

int NumberOfSpacesIn(string s);

const string month = “February”;

Methods

Methods are special kinds of functions that actually belong to an object, and are expected to work
on that object without having been told to. For example, a normal function for finding the length of
a string s would be called like this: length(s), but a method for finding the length of a string
would actually be part of that string; the function’s name would include the string’s name, and it
wouldn’t need to be given any parameter: s.length() returns the length of the string s. Strings
have many pre-defined methods, some of which are useful, listed below. You can’t create new
methods for strings, so don’t worry about how to define them. They are already there just waiting
to be used. Of course, you can easily define your own normal functions that work on strings.

Other ways of initialising or setting a string:

 string s(t, pos);
 s.assign(t, pos);
 Both of those just assign part of the string t, after skipping the first pos characters
 string s(t, pos, len);
 s.assign(t, pos, len);
 Both of those just assign part of the string t, after skipping the first pos characters they

only copy len characters of what’s left.
Example:

 string one=”abcdefghijklmnopqrstuvwxyz”;
 string two(one, 20);
 string three(one, 20, 3);
 cout << “two=” << two << “, three=” << three << “\n”;
 two.assign(one, 10, 8);
 cout << “two=” << two << “, three=” << three << “\n”;

produces this output:
 two=uvwxyz, three=uvw
 two=klmnopqr, three=uvw

 string s(num, ch);
 s.assign(num, ch);
 Both of those set the string to contain num copies of the character ch.

Example:
 string one(5, ‘x’);
 cout << one;
 one.assign(3, ‘y’);
 cout << one << “\n”;

produces this output:
 xxxxxyyy

Comparisons

The normal relational operators ==, !=, <, >, <=, >= may be used on strings, and behave
as the naive user might expect. Usually.
Warning: For these operators to work correctly, at least one of the operands must be a
proper declared C++ string, either a string variable, a const string, a string function
result, or the result of a (string) typecast. Strings in “quotes” do not count. This:
“abc”<”xyz” does not compare the two strings “abc” and “xyz”, it is a C-style
pointer operation.

The comparison is performed on the individual characters of the string until the first
difference is found. If no differences are found in the characters, the lengths are
compared instead. The individual characters are compared using the normal encoding,
which is usually ASCII. Comparisons are case-sensitive, capital letters are considered
different from little letters. No characters in the strings, even spaces, are ignored.

Given these declarations:

 string scat=“cat”, sdog=“dog”, sCat=“Cat”, sDog=“Dog”, sdoggie=“doggie”;
the following results should apply:

 scat<sdog is true, normal dictionary ordering
 scat==sCat is false, capital ‘C’ is different from little ‘c’
 scat>sCat is true, capital ‘C’ comes before little ‘c’, in ASCII at least
 scat>sDog is false, capital letters before little letters, in ASCII at least
 sDog<sdoggie is true, capital letters before little letters, in ASCII at least
 sdog==sdoggie is false, they have different lengths
 sdog<sdoggie is true, they are the same, but the first is shorter.
 sdoggie==”dog gie” is false, spaces matter
 sdoggie==”doggie” is true.

 Here is what the warning is about:
 “cat”==“cat” is expected to be false
 “cat”<“dog” has a 50-50 chance of being false (meaning that any given compiler

could go either way, not that the result is likely to be different each
time round a loop).

Sequences of letters inside double quotes are not C++ strings; under many circumstances they
are converted into C++ strings, but not always. This is one of the places where it doesn’t
happen.

Appending or Enlarging Strings

 s+t
 Is a simple expression, it results in a new string that consists of all the characters of s

immediately followed by all the characters of t. The length of the result is the length of
s plus the length of t.

Example:
 string one=”abc”, two=”wxyz”;
 string three=one+two;
 cout << “one=” << one << “, ”;
 cout << “two=” << two << “, ”;

 cout << “three=” << three << “\n”;
produces this output, notice that one is not changed:

 one=abc, two=wxyz, three=abcwxyz

 s+=t;
 s.append(t);
 Are equivalent; they both modify the original string s by adding all the characters of t

to the end of it. The resultant length of s is the original length of s plus the length of t.
 s.append(t, pos);
 Assuming t is an official string and pos is an integer, the string s is enlarged by adding

all except the first pos characters of t onto it. Note that in this one case, t must actually
be declared as a C++ string. Quoted constant “strings” behave differently.

 s.append(cc, num);
 Assuming cc is a quoted string of characters (e.g. “this”) or a char*, and num is an

integer, the string s is enlarged by adding only the first num characters of cc onto it.
Absurdity Warning

string one=“abcdefghij”, two=“abcdefghij”;
string extra=“123456789”;
one.append(extra, 4);
two.append(“123456789”, 4);

These two uses of append, which obviously should be the same, are different. A
sequence of characters inside double-quotes is not a C++ string, and the automatic
conversion only happens when there is no same-named function that expects a char*
value. The results are that

one is “abcdefghij56789”
two is “abcdefghij1234”

As far as I am aware, this is the only such example: append with one apparent string
parameter followed by exactly one int parameter.

 s.append(t, pos, num);
 Assuming t is a string and pos and num are integers, The string s is enlarged by adding

num characters from t, after skipping the first pos of them, onto it.
Example:

 string one=”abcdefghijklmnopqrstuvwxyz”;
 string two=”start”;
 two.append(one, 20);
 cout << “two=” << two << “\n”;
 two.append(one, 3, 3);
 cout << “two=” << two << “\n”;

produces this output:
 two=startuvwxyz
 two=startuvwxyzdef

 s.append(num, ch);
 Assuming num is an integer and ch is a char, The string s is enlarged by adding num

copies of the character ch onto the end of it.
Example:

 string sss=”cat”;
 sss.append(10, ‘S’);
 cout << sss << “\n”;

produces this output:
 catSSSSSSSSSS

Getting information about a String

 s.length() and s.size()
 Are exactly the same thing. They both give the size, in characters, of the string.

Example:
 string one=”abcdefghijklmnopqrstuvwxyz”;
 cout << one.length() << “,” << one.size() << “\n”;

produces this output:
 26,26

Accessing the Characters of a String

 s[i]
 (if i is an int, or an expression with an integer value) gives the single character at the

ith position in string s. Positions are counted from zero, so s[0] is the first character
of string s. If i is less than zero, or greater than the length of the string, this expression
is unreliable: it won’t work, but the error might not be detected. If i is equal to the
length of the string, this expression will return the special character ‘\0’; that does not
mean that there is a NUL character at the end of a string, this is just a special rule for
compatibiity with C.

 s.at(i)
(if i is an int, or an expression with an integer value) is exactly the same as s[i],
except that errors are properly detected: using a value of i that is less than zero, or
greater than or equal to the length of the string, causes a fatal run-time error.

Example:
 string one=”abcdefghijklmnopqrstuvwxyz”;
 cout << one[3] << “,” << one[25] << “\n”;
 cout << one.at(0) << “,” << one.at(25) << “\n”;
 one[4]=’*’;
 one.at(6)=’#’;
 cout << one << “\n”;

produces this output:
 d,z
 a,z
 abcd*f#hijklmnopqrstuvwxyz

Larger examples.

This function counts up the number of spaces in any string:

int countspaces(string s)
{ int total=0;
 int len=s.length();
 for (int i=0; i<len; i+=1)
 if (s[i]==‘ ’)
 total+=1;
 return total; }

This function replaces all the spaces in a string with dashes:

void changespacestodashes(string & s)
{ int len=s.length();
 for (int i=0; i<len; i+=1)
 if (s[i]==‘ ’)
 s[i]=‘-’; }

This function converts the string to all capitals, leaving non-letters unchanged:

void capitalise(string & s)
{ const int difference=(‘a’-‘A’);
 int len=s.length();
 for (int i=0; i<len; i+=1)
 { char c=s[i];
 if (c>=‘a’ && c<=‘z’)
 s[i]=c-difference; } }

Searching for Substrings

In the string “Abracadabra”, the smaller string “bra” appears twice, as a substring.
One appearance is near the beginning (with one one character before it starts), and the
other is right at the end (with 8 characters before its start). The substr methods
automate the search for substrings.

 s.find(t)
Looks for the first appearance of t as a substring of s. If there is such a substring, its
position (represented by the number of characters before it) is returned. If there is no
such substring, a position outside the bounds of the string is returned instead.

 s.find(t, pos)
(where pos is an integer) Looks for the first appearance of t as a substring of s after
skipping the first pos characters. If there is such a substring, its position (represented by
the number of characters before it) is returned. If there is no such substring, a position
outside the bounds of the string is returned instead.
In both forms of this function, t may be a string or a single char.

Example:
 string big=”abracadabra”, little=”bra”;
 cout << big.find(little) << “\n”;
 cout << big.find(little) << “\n”;
 cout << big.find(little, 2) << “\n”;

produces this output:
 1
 1
 8

This loop finds all of the appearances of a substring. It does this by starting the next search
immediately after the position found by the previous search.

int next=0, max=big.length()-1;
while (true)
{ int place = big.find(little, next);
 if (place<0 || place>max)
 break;
 cout << little << “ found at position ” << place << “\n”;
 next=place+1; }

 s.rfind(t)
 s.rfind(t, pos)

Is exactly the same as the normal find method, except that the search starts from the
end of the string, not the beginning, so if the substring appears in more than one
position, it will find the last of them.

Example:
 string big=”abracadabra”, little=”bra”;
 cout << big.rfind(little) << “\n”;

produces this output:
 8

Searching for Single Characters

 s.find_first_of(t)

Looks for the first appearance inside the string s of any character that appears anywhere
in t. The value returned is an integer giving the position of that character within s, or a
value outside the possible range if no such character is found. So,
s.find_first_of(“0123456789”) finds the first digit in a string;
s.find_first_of(“([{<”) finds the first appearance of any open-bracket. It is
permitted for t to be a single char instead of a string.

Example:
 string big=”abracadabra”
 cout << big.find_first_of(“bra”) << “\n”;
 cout << big.find_first_of(“cd”) << “\n”;

produces this output:
 0
 4

because character 0 of the string “abracadabra” is ‘a’, which is one of “bra”, and
character 4 of the string is ‘c’, which is one of “cd”.

 s.find_first_of(t, pos)

Is the same as the simpler version of find_first_of, except that it skips the first pos
characters in s, they are not looked at in the search.

 s.find_last_of(t)
 s.find_last_of(t, pos)

These methods are exactly the same as find_first_of, except that they scan
backwards from the end of s. If there is more than one place in which one of the
characters from t appears, the last place will be returned.

 s.find_first_not_of(t)
 s.find_first_not_of(t, pos)

These methods are exactly the same as find_first_of, except that instead of
searching for any character that appears anywhere in t, they search for any character
that does not appear anywhere in t. For example, s.find_first_not_of
(“0123456789”) finds the position in s of the first non-digit character.

 s.find_last_not_of(t)
 s.find_last_not_of(t, pos)

The obvious combination of find_first_not_of and find_last_of. They search
backwards from the end of s, looking for the last character that does not appear
anywhere in t.

Extracting Substrings

 s.substr(pos)

(pos must be an integer) Creates a new string, which is a copy of all but the first
pos characters of s. The original s is not modified.

Example:
 string big=”elephants”;
 string small=big.substr(4);
 string middle=big.substr(5)+”y”;
 cout << big << “ - “ << small << “ - “ << middle << “\n”;

produces this output:
 elephants - hants - antsy

 s.substr(pos, len)

(pos and len must be integers) Creates a new string, which is a copy of the first
len characters of s after skipping the initial pos of them. The original s is not
modified.

Example:
 string big=”hippopotamus”;
 string small=big.substr(5,3);
 string middle=big.substr(8,2)+big.substr(1,4);
 cout << big << “ - “ << small << “ - “ << middle << “\n”;

produces this output:
 hippopotamus - pot - amippo

Inserting Substrings

 s.insert(pos, t)

(pos must be an integer, t is another string) Modifies the string s by adding the
characters of t into it; pos gives the insertion position: the number of characters of s
before the insertion point.

Example:
 string orig=“abcdefghijklmn”;
 string extra=“**XYZ**”;
 orig.insert(5, extra);
 cout << orig << “\n”;

produces this output:
 abcde**XYZ**fghijklmn

 s.insert(pos, num, ch)

(pos and num must be integers, ch is a single char) Modifies the string s by adding
the num copies of the character ch into it; pos gives the insertion position: the number
of characters of s before the insertion point.

Example:
 string orig=“abcdefghijklmn”;
 orig.insert(5, 10, ‘+’);
 cout << orig << “\n”;

produces this output:
 abcde++++++++++fghijklmn

Removing Substrings

 s.erase(pos, num)

(pos and num must be integers) Modifies the string s by removing num characters,
starting with the one at position pos, from it. If the string is too short to have num
characters removed, it is OK: removal just stops at the end of the string.

Example:
 string orig=“abcdefghijklmn”, smaller=“smaller”;
 orig.erase(3, 9);
 smaller.erase(4, 99);
 cout << orig << “ - ” << smaller << “\n”;

produces this output:
 abcmn - smal

Exchange

 s.swap(t);

when t is a string, is equivalent to
 { string temp=s;
 s=t;
 t=temp; }

Pointless Operations

 s.replace(pos, num, t);

when t is a string, is equivalent to
 s.erase(pos, num);
 s.insert(pos, t);

 s.replace(pos, num, t, subpos, subnum);

when t is a string, is equivalent to
 s.erase(pos, num);
 s.insert(pos, t.substr(subpos, subnum));

 s.replace(pos, num, t, numreps, ch);

when ch is a single char, is equivalent to
 s.erase(pos, num);
 s.insert(pos, numreps, ch);

Three-way Comparison

The normal comparison operators <, >, <=, >=, ==, != can be wasteful if there are three
conditions to be tested for, each having its own associated action: do one thing if a<b,
another thing if a==b, and a third thing if a>b; at least two comparisons of the same
strings must be performed. A three-way comparison compares two strings, and
represents the result as a numerically in a way that makes a second comparison
unnecessary.

 s.compare(t)

(s and t must both be strings) This is an expression with integer value. If s<t, the
value is negative; if s==t, the value is zero, and if s>t, the value is positive.

Example:
 string one=”hello”, two=”cat”;
 int cmp = one.compare(two);
 cout << “The ordering of ” << one << “, ” << two << “ is ”;
 if (cmp<0)
 cout << “Correct\n”;

 else if (cmp==0)
 cout << “Indeterminate\n”;
 if (cmp>0)
 cout << “Incorrect\n”;

“Constant Strings”

Always remember that a “constant string”, a bunch of characters inside double quotes, like
“this”, is not a C++ string. It is just an array of chars with a special terminator character
‘\0’ added to the end. The true type is char*, pronounced “char-star”, which is totally different
from string.

char* string

“example” char*

“example” string

Whenever a function (or method) expects a string parameter, but a char* is provided instead,
C++ will perform an automatic conversion. A new temporary string is created as needed, and
passed into the function in place of the char* provided.

But this only applies to parameters. When trying to call a method, the attached object will not be
automatically converted:

“example”.length() does not work.

The phrase “Constant String” does not correctly describe this situation. “Constant String” is usually
taken to refer to something declared as “const string”. In the official literature a sequence of
characters inside double-quotes is usually called a String Literal.

Compatibility with Old C

Given a C++ string, s, the char* or array of characters that it holds may be extracted. Normally this
is only useful if one of the old C string library functions needs to be used, or if pure data is needed
for an operating-system level call. There are two relevant methods:

 s.c_str()
and

 s.data()

The c_str() method returns a char* value that is completely compatible with the C
programming libraries; it is a (pointer to an) array of characters, with a 0 added after the last
character. If s.length() is n, then the array returned by s.c_str() will be at least n+1 bytes
long.

The data() method returns a char* value of exactly the same length as the original string. It does
not have a 0 added after the last character.

The char* values returned by s.c_str() and s.data() are read-only and volatile. It is
forbidden to change any of the characters in the array, and if the original string s is modified it
becomes forbidden to even look at that array (it must be extracted again by another call).

Examples:
 string one=”hello”;
 printf(“<<%s>>\n”, one.c_str());

produces the output: (#include <stdio.h> is required)
 <<hello>>

 string one=”hello”;
 write(1, one.data(), one.length());

produces the output: (#include <unistd.h> is required)
 hello

