Kepler’s Third Law of Planetary Motion
(simplified)

If Y is the time it takes a planet to orbit the sun (in days)

and D is the planet’s distance from the sun (in millions of miles)

Then 6Y2 (D3
A program to test it
#include “library.h”

void main()

{ print("When the year (Y) is ");

 print(365);

 print(" days long,");

 newline();

 print("and the distance to the sun (D) is ");

 print(93);

 print(" million miles,");

 newline();

 print("six times Y squared is ");

 print(6*365*365);

 print(" and D cubed is ");

 print(93*93*93);

 newline(); }

The results of that program

When the year (Y) is 365 days long,

and the distance to the sun (D) is 93 million miles,

six times Y squared is 799350 and D cubed is 804357

Some more data to test it on

	Planet
	Length of Year

Y
	Radius of Orbit

D

	Venus
	223
	67

	Earth
	365
	93

	Mars
	686
	142

	Jupiter
	4429
	484

The better program

#include “library.h”

void kepler_test(int y, int d)

{ print(" When the year (Y) is ");

 print(y);

 print(" days long,");

 newline();

 print(" and the distance to the sun (D) is ");

 print(d);

 print(" million miles,");

 newline();

 print(" six times Y squared is ");

 print(6*y*y);

 print(" and D cubed is ");

 print(d*d*d);

 newline(); }

void main()

{ kepler_test(223, 67);

 kepler_test(365, 93);

 kepler_test(686, 142);

 kepler_test(4429, 484); }

Its results

When the year (Y) is 223 days long,

and the distance to the sun (D) is 67 million miles,

six times Y squared is 298374 and D cubed is 300763

When the year (Y) is 365 days long,

and the distance to the sun (D) is 93 million miles,

six times Y squared is 799350 and D cubed is 804357

When the year (Y) is 686 days long,

and the distance to the sun (D) is 142 million miles,

six times Y squared is 2823576 and D cubed is 2863288

When the year (Y) is 4429 days long,

and the distance to the sun (D) is 484 million miles,

six times Y squared is 117696246 and D cubed is 113379904

Quite irritating really.

Try again.

#include “library.h”

void kepler_test(int y, int d)

{ print(" Y = ");

 print(y);

 print(" days, D = ");

 print(d);

 print(" million miles,");

 newline();

 print(" 6 Y squared = ");

 print(6*y*y);

 print(", D cubed = ");

 print(d*d*d);

 newline(); }

void main()

{ kepler_test(223, 67);

 kepler_test(365, 93);

 kepler_test(686, 142);

 kepler_test(4429, 484); }

 Y = 223 days, D = 67 million miles,

 6 Y squared = 298374, D cubed = 300763

 Y = 365 days, D = 93 million miles,

 6 Y squared = 799350, D cubed = 804357

 Y = 686 days, D = 142 million miles,

 6 Y squared = 2823576, D cubed = 2863288

 Y = 4429 days, D = 484 million miles,

 6 Y squared = 117696246, D cubed = 113379904

Easier to look at, but breaking it up with some headings would be a big improvement...

Venus: Y = 223 days, D = 67 million miles,

 6 Y squared = 298374, D cubed = 300763

Earth: Y = 365 days, D = 93 million miles,

 6 Y squared = 799350, D cubed = 804357

Mars: Y = 686 days, D = 142 million miles,

 6 Y squared = 2823576, D cubed = 2863288

Jupiter: Y = 4429 days, D = 484 million miles,

 6 Y squared = 117696246, D cubed = 113379904

And one new trick makes that easy:
First provide the additional information, by modifying the main function:

void main()

{ kepler_test("Venus", 223, 67);

 kepler_test("Earth", 365, 93);

 kepler_test("Mars", 686, 142);

 kepler_test("Jupiter", 4429, 484); }

Then tell the kepler_test function how to make use of it:

void kepler_test(string name, int y, int d)

{ print(name);
 print(": Y = ");

 print(y);

 print(" days, D = ");

 print(d);

 print(" million miles,");

 newline();

 print(" 6 Y squared = ");

 print(6*y*y);

 print(", D cubed = ");

 print(d*d*d);

 newline(); }

And now it is time for one little programming convenience.

void kepler_test(string name, int y, int d)

{ print(name);

 print(":\n Y = ");

 print(y);

 print(" days, D = ");

 print(d);

 print(" million miles,\n 6 Y squared = ");

 print(6*y*y);

 print(", D cubed = ");

 print(d*d*d);

 newline(); }

Inside a string (i.e. inside "these things"), the backwards divide sign has a special meaning.

Venus:

 Y = 223 days, D = 67 million miles,

 6 Y squared = 298374, D cubed = 300763

Earth:

 Y = 365 days, D = 93 million miles,

 6 Y squared = 799350, D cubed = 804357

Mars:

 Y = 686 days, D = 142 million miles,

 6 Y squared = 2823576, D cubed = 2863288

Jupiter:

 Y = 4429 days, D = 484 million miles,

 6 Y squared = 117696246, D cubed = 113379904

The closeness of two numbers is sometimes expressed as the percentage of one in terms of the other.

21 is 84% of 25

(100*21/25 = 84)
but

186 is 93% of 200

(100*186/200 = 93)
and we normally accept that 186 is closer to 200 than 21 is to 25.

We can use that as a measure of the accuracy of the numbers produced, first define a handy little function to tell us how close two numbers are:

void how_close(int x, int y)

{ print(" Accuracy ");

 print(100*x/y);

 print(" percent.\n"); }

Then make use of it:

void kepler_test(string name, int y, int d)

{ print(name);

 print(":\n Y = ");

 print(y);

 print(" days, D = ");

 print(d);

 print(" million miles,\n 6 Y squared = ");

 print(6*y*y);

 print(", D cubed = ");

 print(d*d*d);

 newline();

 how_close(6*y*y, d*d*d); }

The results are not spectacular:

Venus:

 Y = 223 days, D = 67 million miles,

 6 Y squared = 298374, D cubed = 300763

 Accuracy 99 percent.

Earth:

 Y = 365 days, D = 93 million miles,

 6 Y squared = 799350, D cubed = 804357

 Accuracy 99 percent.

Mars:

 Y = 686 days, D = 142 million miles,

 6 Y squared = 2823576, D cubed = 2863288

 Accuracy 98 percent.

Jupiter:

 Y = 4429 days, D = 484 million miles,

 6 Y squared = 117696246, D cubed = 113379904

 Accuracy -9 percent.

Both problems go away if we use real (floating point) numbers:

void how_close(double x, double y)

{ print(" Accuracy ");

 print(100*x/y);

 print(" percent.\n"); }

But a new problem appears in its place:

Venus:

 Y = 223 days, D = 67 million miles,

 6 Y squared = 298374, D cubed = 300763

 Accuracy 99.2057 percent.

Earth:

 Y = 365 days, D = 93 million miles,

 6 Y squared = 799350, D cubed = 804357

 Accuracy 99.3775 percent.

Mars:

 Y = 686 days, D = 142 million miles,

 6 Y squared = 2823576, D cubed = 2863288

 Accuracy 98.6131 percent.

Jupiter:

 Y = 4429 days, D = 484 million miles,

 6 Y squared = 117696246, D cubed = 113379904

 Accuracy 103.807 percent.

(I cheated slightly, to make the output more readable)

Accuracy better than 100%?

The reason is not difficult to spot.

If closeness is to be expressed as a percentage, we need to always divide the smaller number by the larger one.

The solution introduces a new part of C++

void how_close(double x, double y)

{ print(" Accuracy ");

 if (x<y)

 print(100*x/y);

 else

 print(100*y/x);

 print(" percent.\n"); }

if and else are not functions, they are something else altogether.

