
ECE118 LAB THREE 
 

 

The purpose of this lab is to ensure that you are confident with - and have had a lot of 

practice at - writing small clear functions that give precise control over repetitive tasks. 

The lab is divided into three almost independent sections. Be careful that you don’t ruin 

the work you did for one section while you are working on the next. 

 

Section A - Conversions 

A1. Remembering how to start 
 

Remind yourself of how to write the most basic repetitive function of all, one that 

takes two parameters, A and B, and just prints all the numbers from A to B inclusive. 

This will be the starting point for everything this week, so type it in, and make 

absolutely sure that you have got it right, and it really works. 

 

A2. Exotic Canada 
 

You could adapt that function to count differently. Make a new version of it that 

counts in steps of five, so that if you said “numbers(10, 90);” in main, your 

program would print 10 15 20 25 30 ... 85 90. Test it, make sure you got it 

right. 

Now imagine that you are taking a trip to some wild and exotic part of the world 

where they use the metric system. Canada perhaps. You’ll be driving, and don’t want 

to get a ticket for going too slow, so you want a conversion table to translate miles per 

hour into kilometres per hour. One mile is 1.609344 km. 

Adapt your function so that it doesn’t just print numbers, but prints mph to kph 

conversions instead. Where it used to print X, it should now print X mph is Y kph. 

The first few lines of output would look something like this 
10 mph is 16 kph. 

15 mph is 24 kph. 

20 mph is 32 kph. 

25 mph is 40 kph. 

 

You would like to enjoy the beautiful landscape of Canada and so you decide to 

rent a car. You walk-in to a car rental company. They have a number of options of 

cars you can choose from. From economy model to high end luxury and sports cars. 

However, you wanted to reduce the carbon footprint and get a best fuel efficiency out 

of the car you rent. The information listed for the displayed cars also shows the fuel 

efficiency in kmpl – Kilometers per liter. (1 US Liquid Gallon = 3.78541 liters). 

 

Create a conversion function, which prints US liquid gallon and miles version for a 

chart range from 10 – 50 kmpl (in increments of 5) 

 

For example, 10 kmpl – 10 kilometers per liter should be converted to 23.52 miles per 

gallon. 

 

 

 



Since you are in Canada, you have to pay in Canadian Dollars CA$, where the exchange 

rate is 1 USD = 1.23 CAD, and also average fuel price in Canada is 1.276 CA$ per liter. 

 

Now you plan to take a 2000 mile road trip, in a car with fuel efficiency of 28kmpl.  

 

Print a statement something like this. 

 

Note: 1000 and 28.23 are the inputs, please fill in the ____ based on the conversion rates. 

 

If I am planning to take a 1000 km road trip, in Canada, in a car with a fuel efficiency of 

29.23 kmpl, I need to spend __________ CA$ for fuel. i.e, a _________ mile road trip in 

Canada will cost me _____________ USD in a car with fuel efficiency of _______ mpg. 

 

a. Print the above statement for 1000, 2000, 3000, 4000 & 5000 kms, for a car with 

29kmpl fuel efficiency. 

 

b. Print the above statement for 5000 km trip, for cars with 20, 25, 30, 35, & 40 

kmpl efficiencies. 

 

You are probably seeing some ugly output now, with lots of distracting extra digits. 

When a program calculates (for example) 10*1.609344, it gets a very accurate result, 

16.093444). Usually, precision is what you want, but in this case it doesn’t help. To 

throw away all the digits after the decimal point, and reduce the value to an int, the C++ 

expression is 
(int)(10*1.609344) 

Yes, you do need all those brackets, and of course it works for all numbers with decimal 

points in them, not just 10*1.609344. It is even better if you round the result to the 

nearest int. The trick for that is 
(int)(10*1.609344 + 0.5) 

which works for all positive values. 

But that makes sense only for kilometres per hour. Kilometres are close enough to miles 

that we don’t want to see any digits after the decimal point. Miles per gallon are another 

thing altogether. We want exactly two digits after the point. You can probably work out 

how to reach that goal. 

 

Section B - ASCII Art 

B1. Stars 
 

Go back to your basic counting function from A1, and this time adapt and adopt it in 

a different way. Make a function that has one parameter N, which just prints a row of 

N stars. That’s it, nothing complicated, stars(7) should just print “*******”. 

Your function in A1 had two parameters, but this time we want a function that has 

only one parameter. 

 

B2. Spaces 
 

Now make another function almost identical to that, but it should print spaces instead 

of stars. spaces(7) should just print seven spaces. How are you going to test it? If 

you just print spaces, you don’t see anything. 

 



B3. Stars and Dots 
 

Now make another function that takes two parameters A and B, and prints A dots 

followed by B stars followed by a new line. dotsstars(3, 4) should just print 

“...****”.  Remember that having functions that use other functions to do most of 

their work is a good design technique. 

 

B4. Another adaptation 
 

Thinking about how you controlled repetition so far, write yet another function that 

takes two parameters A and B. This one should count down from A to 1, and at the 

same time count up from B. That sounds pointlessly complicated, but one little 

example will make it clear: sequence(5, 1) should print 

5  1 

4  2 

3  3 

2  4 

1  5 

 

B5. Combining 
 

Still remembering the idea of little functions using other little functions to do their 

jobs, write another function just like sequence, except that it doesn’t print the 

numbers, it uses them as parameters to dotsstars. This new function will draw 

right angled triangles: as an example triangle(5, 1) should print 
 

*..... 

**.... 

***... 

****.. 

*****. 

Not very spectacular I admit, but it’s all good practice. 

 

Section C - Circles 

C1. A circle 
 

One way to draw an approximate circle is to draw a straight line a short distance, then 

turn a small amount to the right. Repeat that so many times that all the turns add up to 

360 degrees, and you’ll be back at the starting point. If the steps are small enough, 

nobody will be able to tell the difference between that and an exact circle. Computer 

monitors aren’t really very sharp, so the steps don’t need to be really really small, just 

small. 

 

Do it. Write a function that draws a circle. You should be able to control the size of 

the circle by altering its parameters. 

 

This is how you get the most accurate value for pi in C++: 
 

const double pi = acos(-1.0); 

 



C2. Weaponising 
 

Now your circle is going to be the wheel of a cannon. 

   

Given the position of the bottom of the wheel and the 

aiming angle (x, y, a), you should be able to make a simple 

cannon anywhere, aiming at any angle you want, such as 30 

degrees (from vertical, shown to the left) or 75 degrees 

(below). 

 

   
 

If you need some help with to get the shape right, there are some formulas on the next pages. 

 

That’s the END of the lab. The rest is just if you need a bit of help with the shape: 
 

This is the cannon sitting on a wheel. The wheel’s radius is r. 

 
a is the aiming angle. 

L1 is the distance from the back of the cannon to the wheel’s axle, L2 is the rest of the 

length. 

Like all cannons it is wider at the back (w1) than the front (w2). 

 
 

G is the point on the ground where the wheel rests. Its coordinates are (xg, yg). 



C is the exact position of the axle, its coordinates are (xc, yc). 

P is the easiest point to start drawing the body of the cannon from, coordinates (xp, yp). 

E is the point where the ball pops out when it is fired, coordinates (xe, ye). 

 
This is a simplified picture of the body of the cannon shown with its “bounding box”. 

The point is to illustrate the difference between the real length of the cannon (len) and 

the sum L1+L2. 

 

The angle shown as b is also helpful when drawing the shape. When the cannon is 

aimed at angle a, the heading for the bottom line is (a-b). Don’t forget that all angles are 

computed in radians. 

 
xc = xg 

yc = yg - r 

 

b = asin((w1-w2)/2/(L1+L2)) 

 

xp = xc - L1 * sin(a-b) 

yp = yc + L1 * cos(a-b) 

 

len = (L1+L2) * cos(b) 

 

Finally, to find the point E, we need two extra values: 

 d is the distance between points P and E 

 g is the angle from point P to point E if the cannon lies flat as in the third diagram. 

 
d = sqrt(len*len + w1*w1/4) 

g = asin(w1/2/d) 

 

xe = xp + d * sin(a-g) 

ye = yp - d * cos(a-g) 

 

 

 

 

 

 


