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Abstract 

 
Nonlinear devices (NLDs) are commonly used to 

generate specific harmonics in the virtual bass system. 
However, a detailed mathematical analysis of these 
NLDs in virtual bass system is still lacking. In this 
paper, a single tone and two tones mathematical 
harmonic analysis of polynomial and exponential typed 
NLDs are presented. Mathematical tools such as 
Taylor Series and Chebyshev Polynomials are used to 
derive a mathematical series of harmonic generated 
from NLDs. MATLAB numerical calculations were 
performed using the harmonic analysis equations. 
Total Harmonic Richness (THR) values were 
calculated. Region of dominance from psychoacoustic 
pitch perception findings were related with this paper 
findings to show the construction of tailor-made NLDs 
using polynomial nonlinearities.  
 
1. Introduction 

 
Nowadays, audio enabled consumer electronic 

devices are getting smaller in size. The loudspeakers 
embedded in these portable devices are also becoming 
smaller to suit the form factor of the device, and 
without degrading the audio quality too much. 
However, small loudspeakers have physical limitation 
that they cannot radiate enough low frequency (bass) 
sound waves, and are often perceived as lack of bass. 

In audio engineering, there has always been a strong 
interest in reproducing good bass frequencies [1-3]. 
The fundamental question is how to extend the low 
frequency bandwidth of the audio reproduction 
devices, such as small loudspeakers and low-cost 
earphones. To extend the low frequency audio 
bandwidth, we can make use of pitch perception 
capability of our human ears to create the virtual bass 
in the human auditory system by means of 
psychoacoustic signal processing [1-3].  

Nonlinear device (NLD) is the key component in 
most of the virtual bass signal processing systems [1-
3]. The objective of having an NLD in the virtual bass 

system is to generate the harmonics from fundamental 
frequencies of the input signals. These generated 
harmonics create virtual pitch at the place of 
fundamental frequency component. Even if the 
fundamental component is removed, human can still 
perceive the virtual pitch at the fundamental 
component based on psychoacoustic phenomenon, 
known as the “missing fundamental” [1-3][6-8]. 

Although harmonics are useful for virtual bass 
system, there are other undesired components such as 
intermodulation frequencies which are also produced 
by the NLD. In this paper, harmonic analysis equations 
used for both harmonic and intermodulation 
components are presented. This paper is organized as 
follows. Section 2 presents the analysis equations and 
simulation results of the single tone harmonic analysis. 
Section 3 presents the two tones harmonic analysis for 
intermodulation components. Section 4 summaries the 
key results in this paper and provide insights into how 
nonlinear functions are chosen and how NLDs can be 
constructed from polynomial functions based on the 
recent and previous findings from psychoacoustics.  
 
2. Single tone harmonic analysis 
 

In this section, the single tone harmonic analysis of 
the nth order static nonlinear system (nonlinearity) is 
examined.  
 
2.1. Generalized single tone harmonic analysis 
 

The polynomial based NLD single tone analysis is 
based on the works by Schaefer [4]. He derived the 
mathematical relationship between polynomial power 
series (1) and Fourier series (2) using a relationship 
from Chebyshev polynomial of the first kind. 
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where y and x denotes the output and input to the 
NLD. A single tone cosine wave is fed into the NLD 
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for the harmonic analysis. Fourier coefficients can then 
be computed from polynomial series coefficients. 
Based on this idea, Schaefer derived a generalized 
equation which produces Fourier series (2) coefficients 

,...},,,{ 3210 cccc  from the polynomial series 
coefficients ,...},,,{ 3210 hhhh . The Schaefer’s equation 
for a single tone harmonic analysis is shown as 
follows: 
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where binomial coefficients are 

)!()!(
)!2(2
jjk

jk
j

jk
+

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
.                                             (4) 

In this paper, we denote a term known as the total 
harmonic richness (THR ) which is a ratio between the 
powers of NLD generated harmonics (from 1st to 6th 
order) to the power of the fundamental input tone. We 
included only the first six harmonics due to the 
findings from region of dominance in psychoacoustic 
pitch perception researches [6-8]. The THR formula for 
single tone analysis is   
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where the numerator is the summation of the power of 
the first six harmonics, and the denominator is the 
power of the fundamental input tone. },,,{ 621 HHH …  
are the magnitudes of the generated harmonics from 
the NLD and ST is the magnitude of the input sine 
tone, set as unity as for this paper. The simulation 
results are in Table 1.  
 
Table 1. Single tone harmonic analysis results 

( )THR  of nonlinearities of different orders. 
n  THR  %  
2 0.250000 25.00 
3 0.625000 62.50 
4 0.265625 26.56 
5 0.492188 49.22 
6 0.255859 25.59 
7 0.418701 41.87 
8 0.243164 24.32 
9 0.369690 36.97 
10 0.230885 23.09 

 
2.2. Exponential function, xb  
 

In this section, the single tone harmonic analysis of 
the exponential function is presented. The base 
constant b is set to e , the exponential function can be 

expanded to a polynomial function by using the 
Taylor’s series.  
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Schaefer has previously derived the generalized single 
tone harmonic analysis equation for this exponential 
function based on his works on harmonic analysis for 
the bipolar junction transistor [5]. In this paper, we 
modify his equation for the analysis of exponential 
function used in the virtual bass system. The modified 
Schaefer’s second equation for the single tone 
harmonic analysis of exponential function, xey =  is 
stated as 
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where kc is the magnitude of the kth harmonic, 
generated by the exponential function.  

However, the exponential function of xey = has 
base constant, e  which cannot be varied as a parameter 
to adjust the THR values if it is required.  Therefore, we 
modified (6) and investigated the characteristic of 
varying the base constant of the exponential function 
and how base constant influences the THR .  

Since bxx eb ln= and using (6), the exponential 
function with different base function can be converted 
to the polynomial form as follows,  
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Therefore, the generalized single tone harmonic 
analysis formula for xb can be derived from (7), and the 
kth generated components from the exponential 
function with variable base, b can be derived as 
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Using (9), a MATLAB program was written to 
calculate the THR values of different base, b . The 
results are listed in Table 2.  

From Table 2 results, the following observations 
are made. 
1. THR  increases with the exponential base, b . 
2. By increasing the base too much will result in 

strong harmonic components at the output and 
may cause saturation problem in real-time 
implementation due to the harmonic amplitudes 
which are larger than one.  

3. Therefore, by adjusting the base, b , the 
desiredTHR value can be obtained.  

The measurement of THR  is the first assessment of 
audio nonlinearity for NLD. However, it alone cannot 
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predict the entire performance of the nonlinear system. 
There are other generated undesired components called 
intermodulation frequencies which are heard as 
unpleasant audio distortion. In the following section, 
the intermodulation components, generated by NLD, 
are examined.  
 
Table 2. Single tone harmonic analysis results 

( )THR  of the exponential function, xby = . 

b  THR  %  

1.5 0.173020 17.30 
2.5 1.083776 108.38 
3.5 2.503114 250.31 
4.5 4.376454 437.65 
5.5 6.686533 668.65 
6.5 9.423839 942.38 
7.5 12.581751 1258.18 
8.5 16.155135 1615.51 
9.5 20.139775 2013.98 

 
3. Two tones harmonic analysis 
 

To examine the intermodulation components, the 
two tones of 100 Hz and 120 Hz are fed into the NLD. 
To quantify the performance of the different orders of 
nonlinearities, the following three metrics are used:  
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where HΔ denotes the ratio from the total power of 
interharmonic components to the total power of two 
input tones. IMΔ  denotes the ratio from the total power 
of intermodulation components to the total power of 
two input tones. ∑ =

M
k kIM1

2 is the summation of the 
power of M intermodulation components, generated by 
NLD or a particular nonlinearity under investigation. 
∑ =

L
k kH1

2 is the summation of the power of L  harmonic 

components generated by the NLD. ∑ =
2

1
2

i iT is the total 
power of the two input tones. HDR is the Harmonic 
Distortion energy Ratio measuring the ratio between 
the generated harmonics’ powers to the generated 
intermodulation distortion components’ powers.  

To simulate the intermodulation effect, the 
“interharmonic analysis formula” for nonlinear system 

identification [9] was modified to suit the two tones 
harmonic analysis. )( ωjX denotes two input tones and 

)( ωjY  denotes the nonlinearity output components of 
DC, fundamental frequencies, harmonics of even and 
odd order and intermodulation components. They can 
be expressed as 
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where A , 0ω andφ are amplitude, frequency and phase. 
The output of the second order nonlinearity can be 
expressed as 
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Extending the expansion equation, the frequency 
combination equation for an nth order nonlinearity can 
be constructed with n nested summations. A simulation 
was performed up to 6th order nonlinearity. The 
simulation framework is shown in Fig. 1, and the 
results are in Table 3.  
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Fig. 1. Simulation framework for two tones 
harmonic analysis. 

 
 

Table 3. Simulation results of HΔ and IMΔ  for 
the different orders of nonlinearities. 

n HΔ  IMΔ  HIDR  
2 0.2500 1.0000 0.250000 
3 5.1250 1.1250 4.555556 
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4 4.0156 10.0625 0.399068 
5 41.5078 20.5078 2.024000 
6 50.7402 118.6387 0.427687 

 
In Table 3, n denotes the order of nonlinearity. Two 

input tones of 100 Hz and 120 Hz are fed into the 
nonlinearity. From the computed values, HΔ  , IMΔ  
and HIDR values are calculated with respect to the 
nonlinearity order. The following observations are 
noted. 
1. HΔ and IMΔ go higher with the increasing order of 

nonlinearities. 
2. IMH Δ>Δ when the order of nonlinearity is odd, 

but IMH Δ<Δ when the order of nonlinearity is 
even. 

3. HIDR of odd order nonlinearity is always greater 
than the even order ones  

These findings can be interpreted as all the even order 
nonlinearities generate DC component which takes up 
a large amount of output energy. DC components are 
not taken into the calculation of HΔ , IMΔ and HIDR  
since they are not useful for the harmonic generation. 
 
3.1. Exponential function, xb  
 

Since the exponential function with base b can be 
approximated using the polynomial series (8), it can be 
viewed as a weighted sum of static nonlinear systems 
(nonlinearities). By using the simulation framework of 
Fig. 1, the HΔ , IMΔ and HIDR for the two input tones 
can be computed. The results are listed in Table 4. The 
highest nonlinearity order is set to six. The base 
constant is varied from 1.5 to 9.5 and the numerical 
results are obtained. Using (8), the exponential 
function xb can be approximated as 
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k = are the weights of the nonlinearities. 

Based on this approximation, the exponential function 
NLD, xb can be constructed using polynomials NLD or 
blocks of static nonlinear systems.  

It is observed that HΔ and IMΔ  increase accordingly 
with increasing base, b of the exponential function, as 
shown in Table 4. In each row, HΔ and IMΔ are 
approximately the same, meaning that the 
interharmonic distortion contribution and 
intermodulation distortion contribution are balanced 
for the exponential function NLD. HIDR in table 4 
shows that the higher the base is, the 

higher HIDR value is obtained, meaning that 
harmonics’ energy with respect to the intermodulation 
components’ energy is increased with increasing base 
values. However, varying the base too much has a 
danger of harmonics and intermodulation components 
over amplification which is generally not desirable.  
 

Table 4. Simulation results 
of HΔ and IMΔ for xb . 

b  HΔ  IMΔ  HIDR  
1.5 0.0023 0.0069 0.336856 
2.5 0.1330 0.2041  0.651773 
3.5 0.7754 0.8595 0.902182 
4.5 2.3346 2.2139  1.054528 
5.5 5.1759 4.5577  1.135636 
6.5 9.6435 8.2206  1.173083 
7.5 16.0676 13.5530  1.185538 
8.5 24.7655 20.9135 1.184188 
9.5 36.0396 30.6602 1.175451 

 
4. Discussions 
 

The objective of the virtual bass system is to extend 
the low frequency bandwidth of the small loudspeakers 
by making use of NLD, which can generate harmonics 
from input audio signal. These generated harmonics 
can create virtual pitch in the human auditory system. 
Even if the fundamental of the original signal, which 
falls below the loudspeaker cut-off frequency, is 
removed, the pitch at the location of the fundamental 
frequency is still perceived. By making use of this 
well-known psychoacoustics phenomenon, known as 
the “missing fundamental”, and combining with the 
nonlinear system theory, we can design the NLD for 
virtual bass enhancement system.  

Virtual bass system shifts the low frequencies, 
which are below the small loudspeaker’s cut-off 
frequency, to the mid-range by NLD-generated 
harmonics. These harmonics in the mid-range create 
perceived virtual bass in the auditory system. The 
question on which harmonics are the most important 
for pitch perception is known as determining 
dominance region in the psychoacoustic literature [6-
8]. However, there is no exact agreement between 
researchers on which harmonics are the most important 
based on subjective listening tests. However, all 
reported generally that harmonics from one to six are 
important when the fundamental frequency is below 
1400 Hz.  

To construct a NLD using individual nonlinearities 
with weighted gains, the sixth order nonlinearity is 
enough to generate the harmonics number up to six 
which are in the dominance region of perceived pitch. 
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Hence, the infinite series (8) can be approximated up to 
the sixth order in (15) without loss of precision and 
psychoacoustic requirement.  

In this paper, another kind of NLD called the 
exponential NLD is formulated and simulated. Since 
the exponential function can be approximated using 
Taylor polynomial series, it can be said that the 
exponential function NLD is a special kind of 
polynomial NLD. As for the polynomial NLD, the 
design parameters are the individual gains of the 
nonlinearity blocks whereas for the exponential NLD, 
the design parameter is the base, b . 

Table 2 shows that increasing the base of the 
exponential function results in dramatic increase 
in THR values. In addition, Table 4 shows that 
increasing the base also results in increasing the energy 
of interharmonic and intermodulation components if 
they are present. However, Table 4 shows that the 
energy ratio between the generated harmonics, which 
are desirable, and the intermodulation components, 
which are undesirable, are increased with increasing 
base. This can be interpreted as increasing the base of 
the exponential function will result in stronger 
harmonics and intermodulation components but the 
harmonics energy are stronger than intermodulation 
components energy. 

The infinite series of harmonics can be generated 
by the exponential function NLD. The generated 
harmonic level decays as a function of the amplitude of 
the fundamental component, which is a desired 
response for natural musical instruments [3]. If the 
input level is high, the exponential NLD can generate 
stronger harmonics. Otherwise, it generates weaker 
harmonics. That is why the exponential NLD is a good 
NLD to be used in virtual bass system. 

By using Taylor’s series, the exponential NLD can 
be approximated to the polynomial form. If we want to 
implement the exponential function NLD as in left 
hand side of equation (15), we have the base, b as the 
parameter to adjust the harmonic richness. On the other 
hand, the same exponential function NLD in the right 
hand side of equation (15), we have the weights, kh to 
parameterize the NLD. In addition, by knowing the 
facts of static nonlinearities simulation results, 
described earlier, we can also connect the 
nonlinearities blocks up to sixth order with adjustable 
weights to design the tailor-made NLD for the virtual 
bass enhancement system. 
 
5. Conclusions 
 

Harmonic analysis of single tone and two tones for 
the NLDs used in virtual bass system was presented in 
this paper. Mathematical harmonic analysis formulas 

were used to develop the simulation framework. This 
simulation framework was then used to obtain the 
THR , HΔ , IMΔ and HIDR values for single tone and 
two tones NLD harmonic analysis. Results were 
obtained, summarized and related with psychoacoustic 
pitch perception researches to study the effect of 
polynomial NLD and exponential NLD which can be 
used in the virtual bass system.  
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