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ABSTRACT 

Nonlinear devices (NLD) are used in the virtual bass system. NLD generates harmonics which in turn 
create the pitch perception and are used in the audio bass enhancement systems using psychoacoustics. This 
paper presents the mathematical derivations and analyses of five different NLD devices, together with 
intermodulation analysis of harmonics generated by these NLDs. The five NLDs are half-wave rectifier, 
full-wave rectifier, square wave, polynomial function and exponential function. The derivation of harmonic 
analysis equations are based on Fourier Theorems, Chebyshev Polynomials, and Taylor Series expansions. 
Besides the harmonics, intermodulation components are also resulted from NLDs. Both mathematical 
analysis and simulation results are presented for the intermodulation effects of harmonics generated by 
NLDs.  

 

1. INTRODUCTION 

Small loudspeakers, embedded in the consumer portable 
electronic devices, cannot reproduce rich bass 
frequencies, because of psychical size limitation. 
Similarly, low-quality headphones also have very poor 
bass frequency response. Therefore, the audio 

reproduction bandwidths of these devices are very 
limited. Normally, bass frequencies are below 250 Hz, 
and the small loudspeakers’ or low-quality headphones’ 
cut-off frequencies are higher than 250 Hz. The audio 
frequencies below the cut-off frequencies cannot be 
reproduced or attenuated severely.  
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To extend the low-frequency audio bandwidth, without 
pushing the physical limit of audio reproduction 
devices, we can make use of a psychoacoustic 
phenomenon, called the “Missing Fundamental” [10-
12]. The “Missing Fundamental” phenomenon states 
that human can perceive the virtual pitch at the 
fundamental frequency when the harmonics are present, 
even if the fundamental frequency itself is removed or 
not present. This phenomenon can be used to create the 
virtual bass system or low frequency psychoacoustic 
audio bandwidth extension systems [1-9].  

This topic has been well-researched by various 
researchers, both in academic and industry. A variety of 
bass enhancement systems using psychoacoustics have 
been implemented, and reported in the literatures [1-9]. 
Basically, there are two approaches to implement the 
psychoacoustic bandwidth extension system or virtual 
bass system, such as time-domain approach and 
frequency-domain approach [21]. In time-domain 
approach, NLD is used as a central processing block to 
generate the harmonics based on incoming audio signal. 
By generating harmonics, the virtual bass system can 
create virtual pitch at the bass frequencies, which our 
human ear can perceive, even though those frequencies 
may not be psychically present [1-9]. 

Since NLD is used in the central processing block of the 
time-domain approach virtual bass system, five types of 
NLDs have been studied in this paper. Harmonic 
analysis using single tone as an input and 
intermodulation distortion analysis using logarithmic 
multitones as inputs are also investigated. Virtual bass 
system research is an interdisciplinary research, 
containing psychoacoustics, non-linear system theory 
and signal processing. In this paper, we attempted to 
relate these three fields to understand the nature of 
NLDs for virtual bass system. Therefore, in Section 2, 
we present the harmonic and intermodulation distortion 
analysis of static memoryless nonlinearities up to sixth 
order polynomial. These polynomials can in turn be 
viewed as a parallel connection of static memoryless 
nonlinearities as shown in Figure 1 [22-23]. Section 3 
presents the detailed analysis of five types of NLDs, 
including harmonic analysis and intermodulation 
distortion analysis. Section 4 discusses the NLD 
simulation results. Section 5 concludes this paper. 

2. STATIC MEMORYLESS NONLINEARITIES 

NLD is a nonlinear device which can be implemented 
either digital or analog means. It can be constructed 

using dynamical systems which have memory or static 
memoryless nonlinearities [22]. The five NLDs 
presented in this paper are static memoryless nonlinear 
systems and can be constructed as a parallel connection 
of different orders of weighted nonlinearities, as shown 
in Figure 1.  
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Figure 1: A block diagram showing a polynomial NLD 

can be constructed using different orders of 
nonlinearities, connected in parallel. 

 
The usefulness of nonlinear system for the virtual bass 
system is that it can generate new frequencies, which is 
not possible for linear system. The nonlinear system 
generates new frequencies as harmonics, that consist of 
desired components to enhance the bass in virtual bass 
system, and intermodulation components that are 
undesired components and cause unpleasant distortion. 
To understand the nature of harmonic generation and 
intermodulation contamination, we can use two tests. 
The first test is the single tone test and the second test is 
the multitones test. Subsequent sections present the 
single tone harmonic analysis, multitones harmonic and 
intermodulation component analysis, and four 
measurement metrics to perform objective comparisons 
among the NLDs. All the results presented in this paper 
are obtained using MATLAB. 

2.1. Single Tone Harmonic Analysis 

A single sine tone with an adjustable amplitude is fed 
into the NLD (or nonlinearity) under investigation, as 
shown in Figure 2. The output harmonics amplitudes are 
measured using Discrete Fourier Transform (DFT) or 
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respective derived mathematical formulas, such as 
Schaefer-Suen equations. 
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Figure 2: A diagram showing the single tone input 
harmonic analysis of a static nonlinear system. 

 
As described in previous section, any static memoryless 
nonlinear system can be approximated by polynomial 
series. Referring to Figure 1, nonlinearity nx is a sub 
block of polynomial NLD. The polynomial based NLD 
single tone analysis is based on the works by R. A. 
Schaefer [14] and C. Y. Suen [24]. Schaefer derived the 
mathematical relationship between polynomial power 
series (1) and Fourier series (2) using a relationship 
from Chebyshev polynomial of the first kind [15]. 
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where y and x denotes the output and input of the NLD, 
respectively. A single tone cosine wave is fed into the 
NLD for the harmonic analysis. This can be expressed 
mathematically as follows. 
 

θcos=x , ftπθ 2= ,                                                    (3) 
 
where f is the frequency in Hz, and t is the time in 
seconds. If θcos is fed into the NLD in (1), output 
becomes 
 

)(xfy =  
   )(cosθf=  

   K++++= θθθ 3
3

2
210 coscoscos hhhh               (4) 

 
Equation (2) and (4) can be related by Chebyshev 
polynomials of the first kind: 
 

θθ kTk cos)(cos = .                                                      (5) 
 

Fourier coefficients can then be computed from 
polynomial series coefficients. Base on this idea, 
Schaefer derived a generalized equation which produces 
Fourier series (2) coefficients ,...},,,{ 3210 cccc from the 
polynomial series coefficients ,...},,,{ 3210 hhhh . This 
equation is powerful in the sense that it can calculate the 
magnitudes of harmonics produced by any order of 
static nonlinearities individually, as well as any order of 
polynomial based NLD, excited by a single tone. The 
Schaefer’s equation for a single tone harmonic analysis 
is shown as follows: 
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where binomial coefficients are 
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However, Schaefer’s original equation has one 
limitation that it fixes the input tone to unity. To 
overcome this limitation, C. Y. Suen [24] derived a 
generalized harmonic analysis equation with varying 
single tone amplitude, A as a parameter using a different 
approach.  Suen’s equation took into consideration of 
the adjustable input amplitude tone. By comparing the 
two equations and rearranging the terms, we arrive at 
the Schaefer-Suen equation for the generalized 
harmonic equation as  
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With (8), we can adjust the amplitude of the input 
tone, A and calculate the generated harmonic amplitudes 
directly from polynomial coefficients, kh ’s. The infinite 
series in (8) is convergent, and for the nth order 
nonlinearity, we only need to calculate up 
to nk = or nkc = . This equation is powerful in the sense 
that without going through DFT, we can calculate the 
generated harmonics amplitudes using simple algebraic 
formulas. Using (8), we can also count the total number 
of harmonics generated by a particular nonlinearity and 
list the results in Table 1 as follows. 
 
 
 



Nay Oo and Woon-Seng Gan   Harmonics and IM distortion analysis of NLDs
 

AES 124th Convention, Amsterdam, The Netherlands, 2008 May  17–20 
Page 4 of 18 

Table 1. Relationship between harmonic numbers, total 
number of harmonics and order of nonlinearity. 

n  
DC and Harmonics Numbers Total number of 

harmonics, H  

2 DC, 2 1 

3 1,3 2 
4 DC, 2, 4 2 
5 1,3,5 3 
6 DC, 2, 4, 6 3 
7 1,3,5,7 4 
8 DC, 2, 4, 6, 8 4 
9 1,3,5,7,9 5 
10 DC, 2, 4, 6, 8, 10 5 
 

From Table (1), the following observations are made. 
 

• The number of harmonics produced by the 
nonlinearity increases when the order of 
nonlinearity increases. 

• The odd order nonlinearity can produce only odd 
harmonics, and the even order nonlinearity can 
produce only even order harmonics. 

• The odd order nonlinearity always reproduces the 
fundamental which is the first harmonic number. 

• The even order nonlinearity always produces DC 
component. 

• The maximum harmonic number is always equal to 
the order of nonlinearity. 

• For the total number of harmonics generated, H can 
be formulated as follows: 

 

2
nH =                           ( n is even),                       (9) 

2
1+

=
nH            ( n is odd).                        (10) 

2.2. Multitones Harmonic Analysis 

In a virtual bass system, the generated harmonics are 
desired frequency components which create virtual bass 
perception in the human auditory system, whereas 
generated intermodulation components are heard as 
audio distortion. The intermodulation components are 
formed by addition or subtraction of two or more input 
frequency components, as shown in Figure 3.  
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Figure 3: A diagram showing the two input tones 

intermodulation analysis.  

In virtual bass system, the input signal to the NLD are 
low-pass filtered [1-6]. The cut-off frequency of the 
low-pass filter is near the loudspeaker cut-off frequency 
or resonance frequency. Therefore, the input signal 
spectrum to the NLD is assumed to be less than 200 Hz 
(audio bass frequencies). From 20 Hz to 200 Hz, we 
calculate five logarithmic tones as follows [22]. We use 
logarithmic-multitones stimulus as input because 
previous research findings by others showed that only 
logarithmically equal space multitones can generate 
more intermodulation distortion components of the 
device under test [22]. The calculation of the 
frequencies of five logarithmic multitones is listed in 
Table 2.  

Table 2.  Five logarithmic multitones calculations from 
20 Hz to 200 Hz. 

No. Calculation Rounded 

1 20 Hz 20 Hz 

2 565.35)41(log20 1 =× − Hz 36 Hz 

3 246.63)41(log565.35 1 =× − Hz 63 Hz 

4 468.112)41(log246.63 1 =× − Hz 112 Hz 

5 200)41(log468.112 1 =× − Hz 200 Hz 

To simulate the intermodulation effect, the 
“interharmonic analysis formula” for nonlinear system 
identification was modified to suit the two tones 
harmonic analysis [20]. )( ωjX denotes two input tones, 
and )( ωjY denotes the nonlinearity output components 
of DC, fundamental frequencies, harmonics of even and 
odd order and intermodulation components. They can be 
expressed as 
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where A , 0ω andφ are amplitude, frequency and phase. 
The output of the second order nonlinearity can be 
expressed as 
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The output of the third order nonlinearity can also be 
expressed as 
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Extending the expansion equation, the frequency 
combination equation for an nth order nonlinearity can 
be constructed with n nested summations. A simulation 
was performed up to 6th order nonlinearity. The 
simulation framework is shown in Figure 4 which can 
be used for simulating any nonlinearity block in Figure 
1. The results of individual nonlinear system simulation 
can be combined together to construct the NLDs 
simulation. As for this later case, individual 
nonlinearities are simulated first and the resultant 
harmonics are combined to get the overall system 
response. For the first stage, Frequency Combination, 
the total number of frequency contributions, C  [20] can 
be formulated as  

nFC )2(= ,                                                               (15) 

where F is the number of multitones inputs and n is the 
order of nonlinearity. In this paper, five logarithmic 
tones )5( =F , as shown in Table 2, are used. The 
frequency combinations for the first stage can be 
calculated, as described in Table 3. The second stage, 
Sorting, sorts the generated frequencies in ascending 
order. At this stage, frequencies are not overlapping yet. 
This stage can take up a long time if not an efficient 

algorithm is used. A MATLAB command, sortrows, is 
used in our simulation. The third stage, Harmonic and 
Intermodulation Components Separation decouples 
harmonics and intermodulation frequencies and put into 
the separate vectors.  By this stage, the harmonic 
components and intermodulation distortion components 
can be found. The final stage, Frequency Overlapping 
overlaps the redundant frequencies. At the end of the 
process, we can obtain two vectors with harmonics and 
intermodulation components separately.  

Table 3. Frequency combinations and order of 
nonlinearity for the first stage of Figure 4. 

Nonlinearity 
Order, n  

Total Number of Frequency 
Combinations, C  

2 100 

3 1000 
4 10000 
5 100000 
6 1000000 
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Figure 4: Simulation framework for multitones 
harmonic and intermodulation components analysis 

The simulation framework in Figure 4 is for a single 
nonlinearity of order, n . As for the NLD case, where 
there are multiple order of different nonlinearities up to 

6=n , weighted and connected in parallel, as shown in 
Figure 1. Therefore, we can link up the simulation 
framework for individual nonlinearity, add the vectors 
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of harmonics and IM components and go through again 
Sorting and Frequency Overlapping stage for overall 
NLD. By doing this, we can get the harmonics and 
intermodulation components of polynomial 
approximated NLDs which are described in Section 4.  

2.3. Harmonic Richness and Intermodulation 
Distortion Measurement Metrics 

2.3.1. Total Harmonic Richness (THR ) 

In this paper, we define a term known as the total 
harmonic richness (THR ) which is the ratio between the 
powers of NLD generated harmonics (from 1st to 6th 
order) to the power of the fundamental input tone. We 
include only the first six harmonics due to the findings 
from the region of dominance in psychoacoustic pitch 
perception researches [8-10, 17-19]. The THR formula 
for single tone analysis is given as 

2

2
6

2
2

2
1

)(
)()()(

ST
HHHTHR +++

=
L ,                        (16) 

where the numerator is the summation of generated 
harmonics power from first to sixth harmonics, and the 
denominator is the power of the single tone which is the 
fundamental frequency.  

2.3.2. Harmonic to IM Distortion Ratio ( HIDR ) 

Harmonic to Intermodulation Distortion Ratio ( HIDR ) 
measures the ratio between the summation of the power 
of generated harmonics and the summation of the power 
of Intermodulation components. The HIDR formula for 
multitones analysis is 
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where∑ =
L
k kH1

2)( is the summation of the power of L  

harmonic components, and∑ =
M
k kIM1

2 is the summation 
of the power of M intermodulation distortion 
components, generated by the NLD or nonlinearity 
under investigation.  

2.3.3. Harmonic to Multitones Ratio ( HΔ ) 

Harmonic to Multitones Ratio ( HΔ ) measures the ratio 
between the power of generated harmonics and the 
summation of the power of input multitones. 
The HΔ formula for multitones analysis is given as 

∑
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where∑ =
N
i iT1

2)( is the summation of the power of input 
multitones and N is the number of multitones. 

2.3.4. IM Distortion to Multitones Ratio ( IMΔ ) 

Intermodulation Distortion to Multitones Ratio( IMΔ ) 
measures the ratio between the power of generated IM 
components and the summation of the power of input 
multitones. The IMΔ formula for multitones analysis is 
given as 

2
1

1
2

)(
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∑
∑

=

==Δ N
i i

M
k k

IM T
IM

,                                                 (19) 

where HIDR , HΔ and IMΔ are objective measurement 
metrics for multitones input harmonic and 
intermodulation distortion analysis. THR metric is used 
for objective measurement index of the harmonic 
richness of a particular NLD under investigation. In this 
paper, these four metrics are used to compare the static 
memoryless NLDs of the virtual bass system.  

3.  NLD HARMONIC ANALYSIS 

In this section, harmonic and intermodulation distortion 
analysis of five types of static nonlinear memoryless 
NLDs are presented. For each NLD, we presented the 
original system transfer functions, followed by 
polynomial approximated transfer functions. These 
transfer functions can be used to implement the NLD 
both in analog or digital systems. 

To approximate the original system transfer function, 
we use MATLAB commands, such as polyfit and 
polyval. In this paper, half-wave rectifier, full-wave 
rectifier and limiter are approximated using these 
commands, and the resultant plots are presented. For the 
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exponential function NLD, we can use Taylor’s series 
approximate to obtain the polynomial form which is 
presented in the later section.  

The main idea is to approximate the static memoryless 
NLDs using polynomials, reuse the polynomial 
harmonic and intermodulation analysis equations, and to 
study the effect of nonlinearity. We limit the maximum 
order to sixth order nonlinearity because of two reasons. 
The first reason is that according to psychoacoustic 
pitch perception researches findings [10][17-19], human 
are more sensitive up to sixth harmonics to create 
virtual bass effect. This is called dominance region in 
pitch perception researches. From the previous findings 
in Table 1, to generate up to sixth harmonics, we need 
up to sixth order nonlinearity. The seventh and more 
orders will generate the higher order harmonics which 
are not needed to create bass perception. The second 
reason is that the higher the order is, the lesser the 
contribution to harmonic generation and more 
intermodulation components are generated. 

To obtain the amplitudes of DC and harmonics 
components from a NLD, we can make use of DFT  or 
Schaefer-Suen equation (8) or directly applying the 
Fourier series to the single tone signal.  

While using DFT, we have to select the frequency 
resolution, fΔ which must be sharp enough to 
distinguish between two adjacent frequencies 
components. Another important factor to take into 
account is the maximum frequency, maxf it can capture 
by the DFT. These two relations can be described as 
follows: 

N
ff s=Δ ,       (20) 

2max
sff = ,                                                                 (21) 

where sf denotes the sampling frequency and N denotes 
the DFT points. 

Since we are approximating all the NLDs, described in 
this paper as polynomial series, we can also make use of 
Schaefer-Suen equation (8) from Section 2.1. However, 
we limit the highest order up to six for the previously 
mentioned reasons. Therefore, the generated harmonics 
components can be computed easily using a calculator 
or MATLAB program. Therefore, using (8), the 

magnitude of the DC and harmonic 
components, },,,{ 610 ccc L can be formulated as follows: 
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3.1. Half-wave Rectifier NLD 

The half-wave rectifier NLD system has a transfer 
function that can be expressed as  

)(
2
1 xxy += .                                                           (29) 

Equation (29) can be approximated using polynomials 
as follows (up to 6 order) 

246 1390.13296.16535.0 xxxy +−=                         (30) 

      0419.05.0 ++ x . 
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Figure 5: Half-wave Rectifier NLD original system 
transfer function and polynomial approximated transfer 

function. 

Figure 5 shows the half-wave rectifier original and 
approximated system transfer functions. By using up to 
sixth order, the polynomials of (30) can approximate 
quite well to the original system function of (29). Figure 
6 shows the NLD output in time domain using the 
original and approximated function.  Figure 7 shows the 
frequency domain responses.  

 

Figure 6: Half-wave Rectifier NLD single tone input 
responses for original transfer function and 

approximated transfer function. 

 

 

Figure 7: Half-wave Rectifier NLD single tone 
magnitude responses of original transfer function and 

approximated transfer function. 

The upper plot of Figure 7 shows the harmonics, 
produced by the half-wave rectifier original system 
transfer function equation (29) and the lower plot shows 
the harmonics produced by the polynomial 
approximated equation (30). Half-wave rectifier 
produces DC, fundamental and even harmonics. The 
reason it can reproduce fundamental frequency can be 
linked to the polynomial approximated equation (30). In 
(30), due to the linear term, x , the fundamental 
frequency can be reproduced. Since we approximate up 
to the sixth order, the maximum harmonic number is 
six.  

3.2. Full-wave Rectifier NLD 

The full-wave rectifier NLD system transfer function 
can be expressed as  

xy = .                                                                       (31) 

Equation (31) can be approximated using polynomials 
as  

0838.02781.26593.23070.1y 246 ++−= xxx .       (32) 
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Figure 8: Full-wave Rectifier NLD original system 
transfer function and polynomial approximated transfer 

function. 

Figure 8 shows the full-wave rectifier original system 
transfer function and polynomial approximated system 
transfer function. Figure 9 shows the single tone input 
response of full-wave rectifier NLD. From Figure 10, 
the original full-wave rectifier produces infinite series 
of harmonics, whereas the sixth order polynomial 
approximated function can produce up to sixth order 
harmonics, which are enough to create the virtual bass. 
Since the polynomial equation (32) has only even order 
nonlinearities, the generated harmonics are all even 
order harmonics, including DC component.  

 

Figure 9: Full-wave Rectifier NLD single tone input 
responses for original transfer function and 

approximated transfer function. 

 

         Figure 10: Full-wave Rectifier NLD single tone 
magnitude responses of original transfer function and 

approximated transfer function. 

3.3. Square Wave Function NLD (Limiter) 

The hard limiter or square wave function NLD transfer 
function can be mathematically described as 

⎪
⎩

⎪
⎨

⎧

≤−
=
≥+

=
1,1

0,0
1,1

x
x

x
y .                                                (33) 

The transfer function can be approximated as  

xxxy 9244.32621.74421.4 35 +−= .                        (34) 

 

Figure 11: Square-wave function NLD original system 
transfer function and polynomial approximated transfer 

function. 
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Figure 12: Square-wave function NLD single tone input 
responses for original transfer function and 

approximated transfer function. 

Figure 11 shows the original and approximated transfer 
functions of limiter. In MATLAB simulation, we can 
use sign function for the original transfer function 
simulation. The polynomial approximated transfer 
function up to 6th order is obtained as (34). The 
produced harmonics are all odd order harmonics, 
including fundamental component as shown in Figure 
13.   

 

Figure 13: Square-wave function NLD single tone 
magnitude responses of original transfer function and 

approximated transfer function. 

3.4. Exponential Function NLD 

The exponential function can be expanded to a 
polynomial function by using Taylor’s series. The 
expansion can be mathematically described as 

∑
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Schaefer has previously derived the generalized single 
tone harmonic analysis equation for this exponential 
function based on his works on harmonic analysis for 
the bipolar junction transistor, and published his results 
in [16]. We modified his equation for the analysis of 
exponential function NLD used in the virtual bass 
system. The Schaefer’s equation for the exponential 
function harmonic analysis can be expressed as 

∑
∞

= +
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Since bxx eb ln= and using (35), the exponential 
function with different base function can be converted 
to the polynomial form as  

∑
∞
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k

k
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k
bxby .                                                (37) 

To derive the harmonic analysis equation for (37), we 
modify the Schaefer’s exponential function harmonic 
analysis equation (36) as   

∑
∞
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bAbAc .                                  (38) 

Since we are approximating up to the sixth order, (38) 
can be expanded as 

4
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)(ln

6
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      6
6

5
5

720
)(ln

120
)(ln xbxb

++ .                                      (39) 

Therefore, we have two ways to perform harmonic 
analysis for exponential function NLD of base .b  The 
first way is directly using (38) in infinite series form, 
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and the second way is by using (39) that convert the 
exponential function into polynomial form up to 6th 
order and using the Schaefer-Suen equation of 
polynomial function harmonic analysis. By modifying 
the equation from exponential function of base e to the 
variable of base b , we have the exponential function 
base b as a parameter to control the harmonic richness 
and nonlinearity of the NLD. It is noted that the level of 
nonlinearity increases with a larger base constant, as 
plotted in Figure 14.   

Figure 14: System transfer functions of exponential 
function with base e and adjustable base b . 

For the case where the amplitude of the input signal is 
limited within ],[ aa− , a modified exponential function 
can be used as follows: 

aa

ax

bb
bby −

−

−
−

= .                                                            (40) 

The modified and unmodified exponential functions are 
plotted in Figure 15 for case where 1=a and .5.1=b  For 
input ranging from -1 to 1, the output of the modified 
exponential function is bounded within 0 to 1 as plotted 
in Figure 15. The exponential function NLD is 
computationally simple and it generates infinite series 
of odd and even order harmonics including the 
fundamental frequency and DC component. In Figure 
16, the upper two plots are the original and polynomial 
approximated exponential functions with 
base, 5.1=b and single tone input, 1=a . The lower two 
plots are the original and polynomial approximated 
exponential functions with base, 5.1=b and single tone 
input, 1.0=a . From (39), the exponential function 
polynomial series has very large denominator terms for 

large order of polynomials. Therefore, the higher order 
terms are not significant at all. 

 

Figure 15: System transfer function of exponential 
function NLD of (40). 

 

 

Figure 16: Exponential function NLD single tone 
magnitude responses of original transfer function and 

approximated transfer function. 
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3.5. Polynomial Function NLD 

A polynomial function NLD can be constructed with 
weighted sum of nonlinearities, as shown in Figure 1. 
The even order and odd order nonlinearities, 
including 1=n which is linear, are plotted in Figure 17. 
The even order nonlinearity can only produce even 
order nonlinearity due to its nature of nonsymmetrical 
nonlinearity, and odd order nonlinearity can only 
produce odd order nonlinearity due to the nature of 
symmetrical nonlinearity [25]. DC component is 
produced by even order nonlinearity. The maximum 
number of harmonics which can be produced is equal to 
the highest order of nonlinearity. The polynomial NLD 
generic equation up to sixth order nonlinearity can be 
described as 

6
6

5
5

4
4

3
3

2
21 xhxhxhxhxhxhy +++++= .             (41) 

Figure 17: Linear and nonlinear system transfer function 
plots from 1=n to 6=n , where n is the order of 

nonlinearity. 

The polynomial function NLD is generic and as shown 
in previous sections, the first four NLD can be 
approximated as polynomial function NLD. The design 

parameters are weights such as },,,{ 621 hhh L , and 
adding or removing nonlinearities. As described in 
Section 2, the Schaefer-Suen equation (8) can be 
applied to perform single tone harmonic analysis and 
numerical analysis framework of Figure 4 can be used 
to carry out multitones intermodulation distortion 
analysis. The next section presents the single tone and 
logarithmic multitones harmonic and intermodulation 
distortion analysis results.  

4.    RESULTS AND DISCUSSIONS 

In this section, the single tone and logarithmic 
multitones analysis results of four different NLDs are 
presented. Polynomial NLD is omitted because of its 
generic nature, wide design freedom (parameters), and 
all other NLDs can be approximated using polynomial 
series, forming a kind of polynomial NLD. Four 
measuring metrics, such as   THR , HIDR , HΔ and IMΔ , 
are used to compare among the four different NLDs. All 
the respective equations are described in (16), (17), 
(18), and (19) of Section 2.3. We use THR to compare 
the single tone analysis results, and 

HHIDR Δ, and IMΔ to compare the harmonic and 
intermodulation distortion results among the four NLDs. 
The four measurement metrics described in Section 2.3 
can be simply be summarized in word as follows: 

Tone Singleinput  ofPower 
harmonicssix first   theofPower ∑=THR ,              (42) 

∑
∑=

components IM generated ofPower 
harmonics generated ofPower HIDR ,     (43) 

 Multitoneinput  ofPower 
harmonics generated ofPower ∑=ΔH ,                  (44) 

Multitoneinput  ofPower 
components IM generated ofPower ∑=Δ IM .        (45) 

THR  metric of (16) or (42) shows how much richer the 
power of harmonics are, based on the single tone input 
to the NLD under investigation.  

If only the single tone is fed into the NLD, there is no 
intermodulation component at the output. To excite as 
many intermodulation distortion components as possible 
at the output, we used five logarithmic multitones 
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(calculated in Section 2.2, Table 2.) as input to the NLD 
under investigation. The HIDR metric of (17) or (43) 
give us a measurement of the power ratio between the 
harmonics and intermodulation distortion components, 
based on the logarithmic multitones input. HΔ metric of 
(18) or (44) represents the power ratio between the 
generated harmonics and power of five logarithmic 
multitones inputs. It only takes into consideration of 
harmonics components, generated by the multitones 
stimulus. On contrary, IMΔ of (19) or (45) represents the 
power ratio between the generated intermodulation 
distortion components only and power of five 
logarithmic multitones inputs. In this case, it only takes 
into account of intermodulation distortion components, 
generated by the multitones stimulus. By 
using HΔ and IMΔ , we can decouple the harmonics and 
intermodulation components at the output and study 
their effects. We vary the amplitude of the single tone 
input )(A from 0.1 to 1, calculate the metric and plot the 
responses in next sections. In the case of exponential 
NLD, we can also vary the b parameter and study its 
effects.  

4.1. Single Tone Harmonic Analysis Results 

In this section,THR performance of four different NLDs 
are presented by varying the amplitude of the input 
tone, A . As for the exponential function, NLD, we vary 
the base, b and the amplitude of the input tones, A . 

Figure 18 shows theTHR plot of half-wave and full-
wave rectifier NLDs. Based on this plot, half-wave 
rectifier can produce richer power of harmonics than the 
full-wave rectifier does. TheTHR difference is 0.1 
between the two NLDs. The varying input amplitude of 
single tone does not affect theTHR performance for both 
rectifiers. We only take into consideration of the power 
of harmonic components. As mentioned in the previous 
section, the half-wave rectifier can only produce even 
order harmonics, including DC component and 
fundamental. Except the fundamental component, it 
cannot generate the odd order harmonics. The full-wave 
rectifier generates the DC, and only even order 
harmonics. It cannot generate the odd order harmonics 
and the fundamental component. That is the reason 
whyTHR values of full-wave rectifier is always less 
than those of half-wave rectifier by 10% for all input 
range from 0.1 to 1.  

 

Figure 18: Total Harmonic Richness )(THR plot of Half-
wave and Full-wave Rectifier with single tone input 

amplitude )(A . 

 

Figure 19: Total Harmonic Richness )(THR plot of 
Square Wave Function NLD with single tone input 

amplitude )(A . 

Figure 19 shows theTHR plot of square wave function 
NLD or a hard limiter. Referring to (34), the square 
wave function NLD can be approximated by only odd 
order polynomials or odd order nonlinearities. From the 
findings in Table 1 (Section 2.1), odd order 
nonlinearities can never produce DC component, but it 
always reproduce the fundamental component which is 
the first harmonic. From (34), the polynomial equation 
has a linear term, x multiplied by 3.9244. The linear 
term or linearity always produces the fundamental term, 
and in this case, it is weighed by 3.9244. Since the 
square wave function NLD is a nonlinear system 
constructed with all odd order nonlinearities, it does not 



Nay Oo and Woon-Seng Gan   Harmonics and IM distortion analysis of NLDs
 

AES 124th Convention, Amsterdam, The Netherlands, 2008 May  17–20 
Page 14 of 18 

generate DC components. Therefore, all the energies are 
concentrated at only odd order harmonics with very 
strong energy at the first harmonic, or reproduced 
fundamental frequency. The sum of the power of the 
harmonics (1st, 3rd, 5th } is always the same no matter 
how much is the input power of amplitude of the single 
tone, A . That is the reason why the small amplitude, for 
instant, 0.1 has a very highTHR value of 186.6, and the 
higher amplitude, 1, has a lowTHR value of 1.866.  

 

Figure 20: Total Harmonic Richness )(THR plot of 

Exponential Function, xe  NLD with single tone input 
amplitude )(A . 

Figure 20 shows theTHR plot of the exponential 
function NLD, xe . Note that xe is a special case of 

xb with base, .eb =  As described in (35) and (37), the 
exponential function consists of a linear term and both 
even and odd order nonlinear terms (nonlinearities). 
Therefore, this NLD generates DC, fundamental 
frequency and all even and odd order harmonics. 
Deduced from Schaefer’s equations of (36) and (38), the 
input signal amplitude has significant influence on the 
generated harmonics’ power. In addition, the NLD 
generates higher power of harmonics when the input 
signal amplitude is high, whereas it generates very low 
harmonics’ power when the input signal level is low. 
The harmonics decay rate is also very high for the 
exponential function NLD, as plotted in Figure 16 with 
comparison of 1.0=A and 0.1=A . Hence, the higher 
order harmonics’ powers are not significant at all when 
the input signal amplitude is very low. Figure 20 shows 
the same interpretation with higher input signal 
amplitude generates richer harmonic power. Unlike 
previous three NLDs, such as half-wave rectifier, full-

wave rectifier and hard limiter, the exponential NLD 
generates both even and odd harmonics.  

 

Figure 21: Total Harmonic Richness )(THR plot of 

Exponential Function, xb  NLD with single tone input 
amplitude )(A , and base )(b as varying parameters. 

Figure 21 is an additional simulation results for the 
exponential function, xb with adjustable base, b as a 
parameter. We vary the base, b from -9.5 to +9.5 with a 
step size of 0.5. This plot also includes the input signal 
amplitude, A as a varying parameter. Figure 20 shows 
that the higherTHR values are generated by the higher 
input signal level. This is for the case of xe with fixed 
base, e . As for the case of xb with base as a parameter, 
it depicts a new finding such that the higher input level 
generates higherTHR values only when the base, b is 
positive. The negative base, b has opposite effect, 
meaning that the lower input signal generates 
higherTHR from 0=b to 5.6−=b . However, for the 
case of 5.6−<b , it generates higherTHR for higher 
input signal level.  

 

4.2. Multitones Harmonic and Intermodulation 
Distortion Analysis Results 

MATLAB simulations are carried out to study the 
intermodulation effects of NLD, fed by multitones 
stimulus.  The five logarithmic multitones are calculated 
using Table 2. The polynomial approximation equations 
for five different NLDs are described in Section 3. For 
every nonlinearity in the approximation equations, the 
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frame work of Figure 4 is used to calculate the total 
number of harmonics and intermodulation distortion 
components and their respective frequency values. The 
framework of Figure 22 combines all the harmonics and 
intermodulation components vector, sorts again and 
overlap the frequencies’ indexes and generate two 
vectors, showing which frequencies are harmonics and 
intermodulation distortion components. DFT  was 
performed for the signals output of original NLD 
transfer functions. Input signal sampling frequency is 
set as 48,000 Hz. Therefore, the DFT frequency 
resolution is 1 Hz, using (20). Since the generated 
harmonics and intermodulation components are integer 
values and FFT bin resolution is 1 Hz, we can directly 
set the generated frequencies to the DFT bin indexes in 
simulation. The highest order of nonlinearity used in 
simulation is the sixth order. The maximum frequency 
of the multitones is 200 Hz (Table 2). Therefore, the 
maximum frequency the system can generate is 1200 Hz 
which is less than Nyquist Frequency 24,000 Hz. The 
sampling frequency fold-over or aliasing effect will not 
occur in the simulation.  

Figures 23 to 26 present the simulation results for four 
different NLDs under investigation. HIDR values are 
constant across varying input amplitudes from 0.1 to 1 
in all figures. This means that the power ratio between 
harmonic and intermodulation distortion is the same no 
matter what is the level of the input tones. IMΔ values 
are large when the input multitones amplitudes are 
small. This can be interpreted as at low input signal 
level, all four NLDs generated more IM components’ 
powers with respect to the input multitones power. For 
the full-wave and half-wave rectifiers, the drop in 

IMΔ power ratio is not that significant, compared to the 
drastic power ratio drop of exponential function NLD 
and square-wave NLD at higher input levels. Therefore, 
this result can be interpreted as when the input signals 
level is low, the exponential function NLD and the 
square-wave NLD generate stronger intermodulation 
distortion components’ powers, whereas the rectifiers 
NLD, even though they generate stronger 
intermodulation component power, the ratio is not 
significant. They all agree that at the higher input signal 
levels, the powers of generated intermodulation 
components are lower. Another measure, which is used 
to calculate the power ratio between the total harmonic 
power and the input multitones power, is HΔ . All four 
NLDs have less varying HΔ across the varying input 
signal amplitudes. The general trend of HΔ is 
approaching zero when the input signal level is higher. 

This means that at the higher input signal level, the 
generated harmonics power are almost negligible with 
respect to the input signal power. In general, at the 
higher input signal level, the power of intermodulation 
components and harmonics, generated by multitones 
inputs are lesser.   
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Figure 22: Harmonic and Intermodulation (IM) Analysis 
Simulation Block Diagram. 
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Figure 23: HHIDR Δ, and IMΔ intermodulation distortion 
ratio metrics simulation plots of Half-wave rectifier 

NLD with multitones inputs )(A . 

 

 

 

Figure 24: HHIDR Δ, and IMΔ intermodulation distortion 
ratio metrics simulation plots of Full-wave rectifier 

NLD with multitones inputs )(A . 

 

Figure 25: HHIDR Δ, and IMΔ intermodulation 
distortion ratio metrics simulation plots of Square-wave 

function NLD with multitones inputs )(A . 

 

 

 

Figure 26: HHIDR Δ, and IMΔ intermodulation distortion 
ratio metrics simulation plots of Exponential function, 

xe  NLD with multitones inputs )(A . 
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5.        CONCLUSION 

Harmonic analysis of single tone and logarithmic 
multitones for the NLDs in virtual bass system was 
presented in this paper. The original system transfer 
functions of static memory-less NLDs are approximated 
using polynomial series up to 6th order. Mathematical 
harmonic analysis formulae were used to develop the 
simulation framework. This simulation framework was 
then used to obtain theTHR , ,HIDR HΔ and IMΔ values 
for single tone and multitones NLD harmonic analysis. 
Results were plotted, interpreted and related with 
psychoacoustic pitch perception researches to study the 
performance of full-wave rectifier, half-wave rectifier, 
hard limiter and exponential function NLDs. 

The half-wave rectifier generates the fundamental and 
even harmonics only, whereas the full-wave rectifier 
generates only even harmonics. Then the perceived 
pitch is one octave higher than the original pitch [1]. 
The varying input signal level has no significant effect 
uponTHR values of half- and full-wave rectifiers, as 
shown in Figure 18. This means that no matter what the 
input power is, the generated harmonics' powers are the 
same. 

The hard limiter or square-wave function NLD 
generates only odd harmonics without DC and 
fundamental component. Just like half- and full-wave 
rectifiers, the hard limiter NLD produces an octave high 
pitch perception, which is not matched to the original 
pitch. From Figure 19, theTHR values are very high 
when the input signal level is low, but theTHR values 
are very low when the input signal level is high. The 
general requirement of the virtual bass system is that 
when the input is low, the generated harmonic power 
should be low, and vice versa. The harmonic generation 
effect, based on THR plot (Figure 19) has the reversed 
effect which is not desired.  

The harmonic components generated by the exponential 
NLD have both even and odd ordered components, 
including fundamental component. From Figure 16, 
when the input signal level is low, the generated 
harmonics' levels are low. When the input signal level is 
high, the generated harmonics levels are high. Figure 20 
presents the same characteristic, which is desired to 
create virtual pitch which is matched to the original 
pitch of the signal. In addition, the exponential function 
NLD has a parameter, base b, to control the harmonic 
richness. Based on these simulation results, exponential 
NLD is considered the best for virtual bass systems. 

From Figures 23 to 26, the power of intermodulation 
components are very strong when the input signal level 
is very low, which is depicted by the IMΔ plot for all 
four NLDs. But, it decreases rapidly when the input 
signal level goes higher. Therefore, it is recommended 
not to feed the very low input signal into the NLD 
devices. 
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