
ECE118 LAB NINE 

This lab is all about data processing. You will be reading information from 
a file that contains thousands of individual pieces of data. There is far too 
much for a person to deal with in its numeric form, but you will display it 
in a way that is very easy to understand. 

On the class web site, associated with this lab, there are 76 data files, each 
containing a whole year of weather observations from a different location in the 
U.S. Choose one of them and down-load it to the computer you are using. 

The files all have one line of data for each day of a particular year, and 
each line consists of exactly nine numbers. But beware: this is real data from 
real meteorological stations. Sometimes their equipment isn’t in perfect working 
order, so some days might not appear. 

As an example of the data, here are three lines taken from near the end of 
the file for Mount Washington, NH. 

2003 12 16 0 18 32 39 1 77 
2003 12 17 25 30 34 39 -1 55 
2003 12 18 8 17 32 51 21 82 

The first three numbers on each line give the year, month, and date of the 
observations. The remaining numbers are: 

4. The Minimum Temperature recorded on that day (Fahrenheit)
5. The Average Temperature recorded during that day (Fahrenheit)
6. The Maximum Temperature recorded on that day (Fahrenheit)
7. The Depth of new Snow fall (tenths of an inch)
8. Total amount of Precipitation, incl. snow melted (tenths of an inch)
9. The Maximum Wind speed observed (miles per hour)

If you were wondering, their rain meter was broken on 17th December. That’s 
what -1 indicates in the last three items. 

1. Make sure you can read the file

Write a simple program that reads the whole file, and gives you just enough
information to verify that it is working properly. Perhaps you could just print out the
average temperature for every day, and check that it does generally get warmer at the
beginning of the year and colder at the end.

As a reminder, here is a little snippet of code that would open a file, read three
numbers from it, then close it again.

ifstream fin("file.name"); 
int a, b, c; 
fin >> a >> b >> c; 
if (fin.fail()) 
   cout << “Not enough data in the file!\n”; 
else 
   cout << "the average of the numbers was" << (a+b+c)/3 << "\n"; 
fin.close(); 



2. Turn the numbers into a graph

Adapt your program so that it displays all the average temperatures as points on a
graph. Pick a reasonably large window and pen size so that it will look OK. The
vertical position is of course just the average temperature multiplied by some suitable
scaling factor, but what about the horizontal position?

Make it easy on yourself, just for now. If you pretend that every month is 31 days 
long, then month*31+day gives a simple basis for the x-coordinate, which you can 
scale or shift as desired. 

The picture above was produced from the Miami FL file. If you want to set the 
caption of the window like I did, there is a handy little function called set_caption. 
It takes a string parameter. 

3. A good test.

Download a few more of the weather data files, and make sure your program works
just as well whichever one you choose when it is running. Don’t keep re-editing your
program to change the file name, instead use the special library function

string open_file_pop_up("", string dir, string title) 



It opens up the windows file chooser dialog to let you navigate through your folders 
and select whichever file you want, like you see in the diagram. 

The dir parameter is optional (it can be ""); it tells the pop-up which folder to 
start in. 

The title parameter provides a title for the dialog pop-up window. I used 
“Select Image File” in the example above. 

The function returns as its result the name of the file you selected, ready to be 
used to create the ifstream. If you’ve got an old version of visual studio, you may 
need the special function c_str() to reformat the name. The lab guys will show 
you what to do if it proves necessary. 

4. Get the X coordinate right.
There aren’t really 31 days in every month, and pretending that there are can cause 
annoying gaps. Fortunately, you recently had an assignment that involved working out 
what day of the year a particular date is. Make it so that the horizontal position of each dot 
is correct: the distance between 28th February and 1st March is the same as the distance 
between 1st March and 2nd March, or any other two consecutive days.

5. Less dottiness

In the summer, the temperature tends not to change so much from day to day, so the 
dots almost merge into a solid line. In winter, as you can see, it is harder to see what is 

going on. There are dots all over the place. Make it into a line graph instead. Do not use 
arrays to plot the graph. Plot the values as you read them from the file. 

6. More information

When someone is planning a trip and deciding what to pack, knowing the minimum, 
average and maximum temperature is much more useful than just the average. 
Improve your program so that it shows a red line graph for the daily maximum 
temperature, orange line graph for average and a blue line graph for the daily 
minimum. On the same axes of course. This is one of those situations where the 
restrained use of a few variables can be really useful. 



7. Make it useful
It’s a nice looking graph, but not really very useful. It’s hard to tell just where the last
week of October is, and nobody has any idea what the actual temperatures are: just
how low was that dip in January?

Add some clearly labelled axes: vertical lines showing where each month stats,
and horizontal lines for each ten degrees or so. If you draw them in gray, it won’t
seem too obtrusive.

This is where good clean programming pays off. If you were keeping things
reasonably tidy, it will be easy to work out where the lines go, and to shift the graph
to make room for the labels.

8. Flexibility
There is more information than just temperatures in those files. Allow the user to 
select which pieces of information they want to see graphs for, and what colors 
those graphs should be in. You may have to think about the scaling a little. You won’t 
see much if wind speed is plotted to the same scale as maximum temperature. Except 
Up North perhaps. Based on the previous lab exercise, add buttons on your window 
for the user to select what type of graph to be displayed. (min, max or average).

9. Last thing before you go
Make sure you have written a good robust program. Download a file for a different 
city, and check that your program displays its data correctly. It is important to make 
sure that your program works correctly even for data files that have a lot of missing 
data. One of the data files is for a made-up town called Hopeless, Missouri (at least, I 
don’t think there’s a real town with that name, but I didn’t check). It was deliberately 
made with a lot of missing data to help you with testing.

10. Extra Credit: Adaptive scaling would be nice too. All my samples have assumed that 
temperatures will fit nicely into a 0 to 100 scale. That is untrue for a great many 
places. Your program could scan the file first to find out what the true range is, then 
re-read the data and plot it at a custom-made scale. 




