UNIVERSITY OF ESSEX
=) DEPARTMENT OF

=
COMPUTER SCIENCE
COMPUTING SERVICE

The BCPL Reference Manual

2nd Edition
i P. Gardner
; Revised January 1978

" STEPHEN MURRE.L;_.‘

ke BCPL
REFERENCE JANUAL

2nd Edition ’ Pete Gardner
September Y74 University of Essex
Revised January 1978

This manual describes the
language as implemented in
compiler version 3F.

BCPL REFERENCE MANUAL Page 2

CONTENTS

BRIEF DESCRIPTION OF BCPL

I. HISTORY OF ESSEX BCPL

2. THE BCPL MACHINE

3. INTRODUCTION TO DATA TYPES
4. FURTHER READING

EXPRESSIONS
I. SYNTAX OF EXPRESSIONS

2. SEMANTICS OF EXPRESSIONS
3. PRIORITY OF OPERATORS

4. NAMES

5. CONSTANTS

6. NIL

7. STRINGS

8. BRACKETED EXPRESSIONS

9. VALOF
1@. FUNCTION APPLICATION

Il. UNARY OPERATORS
12. INFIX FUNCTION APPLICATION
13. VECTOR APPLICATION

4. SELECTORS AND BYTES
5. ARITHMETIC OPERATORS
6. SHIFT OPERATORS

17. RELATIONAL OPERATORS
18. LOGICAL OPERATORS

19. CONDITIONAL EXPRESSIONS

BCPL REFERENCE MANUAL Page 3

2.
21.

TABLES
CONSTANT EXPRESSIONS

DECLARATIONS

1.

SYNTAX OF DECLARATIONS

2. SEMANTICS OF DECLARATIONS (SCOPE AND EXTENT)
3. STATIC DECLARATIONS (STATIC, LABELS, .ROUTINES AND
FUNCTIONS)

4. DYNAMIC DECLARATIONS (FORMAL PARAMETERS AND LET)
5. WIERE '

6. SIMULTANEOUS DECLARATIONS (AND)

7. MANIFEST DECLARATIONS

8. INTER-FILE AND LIBRARY COMMUNICATION (EXTERNAL AND

GLOBAL)

COMMANDS

1. SYNTAX OF COMMANDS

2. SECTIONS

3. SIMPLE ASSIGNMENT

4., MULTIPLE ASSIGNMENT

5. LSFT HAND STDE FUNCTION APPLICATION

6. UPDATE ASSIGNMENT

7. ROUTINE APPLICATION

8. RETURN

9. GOTO
16, IF

Il. UNLESS
12. TEST

13. WHILE

BCPL REFERENCE MANUAL Page 4

5.

19.
20,
21.
22.
23.
24,

25.

UNTTL
FOR

REPEAT

REPEATAHILE
REPEATUNTI L

LOOP AND BREAK
SNITCHON, CASE, DEFAULT AND ENDCASE
FINISH

RESULTIS

LABELS

VERY BINDING SEMICOLON
TRACE

PROGRAMMING AIDS

2.

GET

THE START ROUTINE
LAYOUT CONVENTIONS
COMMENTS

INPUT FORMAT

LISTING CONTROL
CONDITIONAL COMPILATION
USER LIBRARY AIDS
VERSION NUMBER

BCPL LIBRARY

THE STRUCTURE OF THE LIBRARY
INPUT AND QUTPUT SPECIFICATION
INPUT ROUTINES

‘ BCPL REFERENCE MANUAL Page 5

4. OUTPUT ROUTINES
5. FREE STORAGE ROUTINES
6. OTHER UTILITY ROUTINES

7. RUNNING A BCPL PROGRAM
1. COMPILER COMMAND FORMAT
2. COMPILER OUTPUT
3. COMPILER ERROR MESSAGES
4, PROGRAM SIZE
5, INTERACTIVE USE
6. BATCH USE
7. [dE POSTMORTEM
8. BCPLDT

8. INTCODE
1. TdE PURPOSE OF INTCODE

2. THE INTCODE MACHINE

3. TdE INTCODE ASSEMBLY LANGUAGE

APPEND ICES
A. FULL SYNTAX OF BCPL
B. RESERVED WORDS AND SYMBOLS
C. CHARACTER CODES
D. MACHINE CODE BLOCKS AND OPERATORS
E. COMPILER SWITCHES
F. CODE CONVENTIONS
G. COMPILATION ERROR MESSAGES
H. STREAM CONTROL BLOCKS

1. EXAMPLE BCPL PROGRAM

BCPL REFERENCE MANUAL Page 6
BRIEF DESCRIPTION OF BCPL

1.0

BRIEF DESCRIPTION OF BCPL
AISTORY OF ESSEX BCPL

BCPL is & (recursive) programming language, originally
developed and implemented by Martin Richards at MIT
project MAC, for general non-numerical problems and
systems work. It employs sensible and efficient control
constructs which largely eliminate the need for ‘'goto's,
and achieves both simplicity and generality by providing a
single data type ~ the word. A word may function as
several different conceptual types, although of course it
is not possible to check that it is consistently so used.

Richards” original compliler produced object code (QCODE)
for an ldealised stack machine and was iltself available in
OCODE. Hence to transport the compiler to another
machine, it was only necessary to write a code generator
to translate OCODE to the required machine code. By this
method Richards took BCPL to Cambridge (England), from
wnich verslon the original Essex ICL 1983 BCPL was
developed via a code generator written by Bernard Sufrin
in 1969. It was transported onto the PDP-]d in 1979 via a
code generator written in BCPL by Brian O“Mahoney and
David Eyres, with help from Bernard Sufrin.

By 1973 BCPL had developed into the major software
language in use by the Department of Computer Science for
both research (e.3. in AI) and teaching (e.g. Compiler
writing), and so with the intention of improving the
compiler, both in performance and by adding new language
features, a new compller was developed by Pete Gardner for
release in 1974, The performance, as measured by the
kilo~core second load on the system, has been improved by
a factor 3 or 41 the new features included are documented
in this manual. The main contributory factor was the
removal of the intermediate QCODE stage which required in
effect two compllations, one from BCPL to OCODE and one
from OCODE to machine code.

THE BCPL MACHINE

BCPL is based on a simple storage model which consists of
a set of consecutively addressed cells arranged thuss-

sn=l oo n+l N2 ! n+3) n+d ! n+s T T

All cells are of uniform size, and hold a binary bit
pattern called a value (usually between 16 and 6@ bits,
depending on the word size of the machinei on the PDP-1®
the word size is 36 bits).

i —

| BCPL REFERENCE MANUAL Page 7
| BRIEF DESCRIPTION OF BCPL

A value is the only primitive data type in BCPL, but it is
used to represent an integer, character, truth value,
address and (of course) a bit pattern. Used as an address
a value can refer to (point to) a vector, a character
string, a table, a function or a routine.

To facilitate the representation of all these conceptual
data types a large set of useful operators have been
provided. For example + - * / assume that their operands
represent integers and the result is consistent with this
representationi ROTL and ROTR assume their relevant
operand is a bit patterni A!l assumes that A points to a
group of consecutively addressed cells (a vector) and
selects the Ith (counting from &). However no type
checking is performed by these operations and it |is
possible, for example, to add an integer to a character
(e.g. 4+70“ equivalent to “44 on the PDP-I10). Such
operations are sometimes desirable although the wuser
should guard against losing machine independence by using
too many tricks of this kind. For example, any assumption
about the precise number of bits in a word could be
dangerous.

1.3 INTRCDUCTION TO DATA TYPES
1.3.1 VYALUES

Conceptual values can be represented in the written
program by canonical symbols, thus:-

Machine dependent bit
Type Example representation on PDP~1U
(36 bit words)

OCTAL #3777 YIBVLRYL3TT7
INTEGER 103 DIDBLIVBA | 47
REAL 1.0 17204 000000
CHARACTER ’Q” DO20BRV0B 121
BOOLEAN TRUE 137177777777

1.3.2 VARIABLES

A variable is a name which is assoclated with a storage
cell -~ by means of a declaration, e.g.

LET A, B =1, 2%

declares two variables (A and B) and initialises them to

BCPL REFERENCE MANUAL Page 8
BRIEF DESCRIPTION OF BCPL -

(the bit pattern equivalent of) the integers 1 and 2.

1.3.3 MANIFEST CONSTANTS

A manifest constant is the direct association at complile
time of a name with a value, e.g.

MANIFEST £(TEN = |05 S.COMMA = #54 L)

l.3.4 VECTORS

A vector is the only form of data structure which can be
formally declared, e.g.

LET P = VEC 5

sets up the structures-

| [3]] + [l]
I - 1 ‘' > . ’ € 0 H ‘

P P!® Pty p12 P13 Plag P!5
PI<E> where <E> is an expression refers to the <E>th cell
of the vector. There is no index bound checking.

1.3.5 OTHER DATA STRUCTURES

Other data structures can be modelled using “pointer~
values to construct arrays, lists, trees, etc. Vectors
can also be dynamically acquired from free storage.

1.3.6 SCOPE AND EXTENT

LET data is allocated in the main stack (as in Algoléd).
It is also possible to declare STATIC data which exlsts
throughout -the duration of the progranm. Programs are
block structured (as in Algol6@) each block opening a new
level of nomenclature for variables. Variahles can also
be declared EXTERNAL (as in PL/1) to enable communication
between separately compiled segments of a program. (The
original GLOBAL vector, which served the same purposes is
still available).

BCPL REFERENCE MANUAL Page 9
BRIEF DESCRIPTION OF BZPL

1.3.7 FUNCTIONS AND ROUTINES

Parameters are called by value. Names ‘of variables are
communicated by using their addresses as value parameters,
this can be done by using & and ! operators. The value
of the expression @A is the address of the variable A. If
this is substituted for formal parameter P then !P in the
body of the called routine (or function) refers to the
original variable A. Routines and functions may be called
with a varianle number of parameters. Return from a
routine is by RETURN or the textual end. Return from a
function 1is upon completion of the evaluation of the
expression which the function denotes.

The declaration of a function or routine creates a STATIC
data item which points to the body of the function or
routine. This data item can be manipulated in the same
way as_any other STATIC data item and obeys the same SCQPE
and EXTENT restrictions.

FURTHER READING

The BCPL Programming Manual, by Martin Richards.
University of Cambridge, Computing Laboratory, Corn
Exchange Street, Cambridge. CB2 3QG. England.

INTCODE - An Interpretive Machine Code for BCPL, by Martin
Richards. University of Cambridge, Computing Laboratory,
Corn Exchange Street, Cambridge. CB2 30G. England.

The BCPL User Guide, by Pete Gardner et al. Department of
Computer Sclence, Computing Service, University of Essex,
Wivenhoe Park, Colchester, Essex. C04 35Q. England.

BCPL REFERENCE MANUAL Page 10

EXPRESSIONS
2.8 EXPRESSIONS
2.1 SYNTAX OF EXPRESSIONS

<E> $i= <P> <<binop> <P>>* | <E> -» <E>, <E> |
SeLECTOR <E>3<E>1<E> | BYTE <E>:<E> H
TABLE <E-lists>

<pP> i1= <name> ! <integer> | <real> | <octal> !
<charconst> ! <truthvalue> ! fconstant !
NIL | <string> | (<E>) ! VALOF <C» H
<E>() | <E>(<E-list>) ! <unop><E> |

<literal>
<binop> ti= %<name>) ! ! tt | 8& ! % v/ 4 REM | #% !
LA T T R R I Vo>
ROTL ¢ ROTR ! ALSHIFT ! ARSHIFT ! LS !
LE + EQ i GE } GR ¢ NE ! #LS ! #LE :
#EQ 1 #GE | #GR | #NE | /\ ! \/ ! EQV H

NEQV ! BITAND ! BITOR

<unops> Pr= NOT 3 @ ! ! | + ! = | ABS ! #+ ! g !
#ABS | FIX ! FLOAT

<E-list> 3= <E> <,<E>>x*

Alternative representation of operators are listed in
Appendix B.

SEMANTICS OF EXPRESSIONS

Expressions are used to calcul ate values, which on the
PDP-12 are bit-patterns of length 36. Unlike languages
such as Fortran and Algol, there are no explicit notions
of type in BCPL. Values are used by the programmer to
model objects of many different kinds, (e.g. truth
values, strings, vectors, data Structures, bit-patterns)
and there are a large number of basic operation on wvalues
which have been provided in order to model the
transformation of these objects.

The simplest kinds of expression are names (see 2.4) and
constants (see 2.H).

PRIORITY OF OPERATORS

In an expression which contains more than one operator,
some scheme mist exist to define the priority of
evaluations of one operator over another. The table below
gives the priority of operators in BCPL.

BCPL REFERENCE MANUAL ‘ Page 11
EXPRESSIONS

fhe top of the list is the highest priority.

{. name, constant, bracketed expression, VAIOF
2. function application :

3. monadic ops. NOT @ t + ~ ABS #+ #— #ABS FIX FLOAT
4, Z%name

5, !

6. 12 R&

7. * / REM #% #/ *%

B.e + = #+ #-

9. << >> ROTL ROIR ALSHIFT ARSHIFT

18. LS LE EQ GE GR NE #LS #LE #EQ #EQ #GE #GR #NE
11. /\ BITAND

12. \/ BITOR

13. EQV NEQV

14, conditional expression

15. TABLE SELECTOR BYTE

Operators of the same priority level are evaluated from
left to right (i.e. the left most operation performed
first), except for :% and &8& which are evaluated from
right to left. The relational operators are consldered to
be of equal priority.

Examples.

AN B+ C *D is evaluated as AN/ (B + (C * D))
AxB~*xC (A * B) C

A 2t B t: C A st (B 1t C)

A LEBLEC A LEBLEC

The order of evaluation of the operands of any operator (>
priority 3) is undefined, except for those of priority 14,
and /\ and \/, whose left operand is evaluated before Iits
right operand.

The remainder of this' chapter deals with each of the
elements of expressions in turn.

HAMES

Names are used to 1dentify objects, these objects may
either be a storage cell (i.e. a variable) or a constant
({.e. a MANIFEST ~ see 3.6). All objects referred to by
a name are full word size.

The name itself may consist of from | to 127 alphanumeric
characters or periods the first character must be
alphabetic.

Examples.

TOTAL i J Version25 A.MUCH.LONGER.NAME

BCPL REFERENCE MANUAL Page .12
EXPRESSIONS

2

5

CONSTANTS
2.5.1 3EMANTICS OF CONSTANTS

All the following forms are shorthand ways of introducing
a bit pattern into the program.

2.5.2 INTEGER CONSTANTS

Unsigned decimal no. in the range 9 to 3435938367, it may
(like all other constants) be negated by a preceding minus
sign. If an integer greater than. 3435938367 is

encountered by the PDP 1y compiler, it uses only the last
36 bits of the value and glves no error me ssage.

Examples.

345 8388608

2.5.3 REAL CONSTANTS

These consist of an integral part, a fractional part - and
an optional exponent part. The integral and fractional
parts both consist of any number (»=) of digits
Separated by a decimal point. The accuracy of the
fractional part on the PDP-10 is 8+ digits. The exponent
part consists of an E followed by an optionally signed
decimal integer in the range -38 to +38. If an exponent
out of this range 1s given, underflow or overflow will
occur with no warning given by the compiler.

Examples.

J. ¥ 3. 14159 19.6E6 Bo1T7E~13

2.5.4 OCTAL CONSTANTS

These consists of any number of octal digits preceded by a
#. The last 36 bits of the octal number are used by the
compiler.

Examples.

#17 #77000077 #4323717

BCPL. REFERENCE MANUAL Page 13
EXPRESSIONS

2.5.5 CHARACTER CONSTANTS

A character constant is a sequence oOf BCPL. characters
between single quote characters - s, {(See Appendix C).
Up to the first 5 characters are packed (right aligned) in
the word.

Examples.

7A’ equivalent to #1901
%C’ (carriage return) equivalent to #15
7007 equivalent to #4323717
IF a7 LE CH LE #Z7 DO ‘e

2.5.6 TRUTH VALUE

The logical representations of true and false are
represented by a word with all bits set and a word with
all bits clear respectively. The reserved words TRUE and
FALSE are used to represent these values.

2.5.7 ‘&’ CONSTANTS

These are entirely machine dependent, a brief description
of them appears below.

£DAY is the value of the PDP-1@ DATE CALLI UUO at the time
of compllation.

£TIME is the value of the PDP-1¢ MSTIME CALLI UUO at the
time of compilation.

£TRACE is the value TRUE or FALSE according to whether the
program 1s being compiled with postmortem code enabled or

not. (See descriptions of /F and /0 switches in Appendix
E).

LSIXBIT <string> is the PDP-18 sixbit representation of
the first 6 characters in the BCPL string. <string>.

£ASCII <string> is the PDP-1Y left aligned ASCII
representation of the first % characters in the BCPL
string <string>.

£ASCIZ <striny> 1is the PDP-10 left aligned ASCI1Z
representation of the first 4 characters 1in the BCPL
string <string>.

£STRING <string> is the value of the first word of the
BCPL string <string>.

£A7Z <string> is the PDP-1@ multiword ASCIZ representation

BCPL REFERENCE MANUAL Page .14
EXPRESSIONS

of the BCPL siring <string>. It is of type <literals.
Beware of the length 1limit on all BCPL. strings (127
characters on the PDP-1U),

LEXP and £XWD have the value zero, see Appendix D for
examples of use.

Lopcode is the 9 bit value of the standard PDP-1@ mnemonic
for all opcodes in the range #40 to #677. For all the
extended TTCALL UUOS, the extended CALLI UUOS and the JRST
and JFCL extensions, it 1is a 36 bit value, the form of
which is described in Appendix D

NIL
Is an expression which can be used as the initialisation
expression in STATIC or LET declarations. It is used as a

'don’t care" value. In fact, it eliminates any
initialisation of the STATIC or LET variable.

Examples.
STATIC £¢ X = NIL £)

LET A, B, C NIL, TRUE, NIL

A and C are defined but uninitialised, B is defined and
initialised to TRUE.

STRINGS

BCPL strings consist of up to 127 characters bracketed by
the double quote character ". The full set of ascii
characters 1is permitted in the string and the way of
representing them can be found in appendix C. Strings are
packed 5 characters to a word, the first character
position 1in the string contains the character count and
any character positions left over In the last word are
zero filled. The value used in the BCPL expression is the
address where the string 1is stored. Strings may be
continued” on more than one source line if necessary by
ending the line to be continued with a “%/, and restarting
the string on a subsequent line with another /#7. The 4%7
characters and all layout characters (spaces, newlines
etc.) are ignored.

Examples.

WAM "THE SUM IS*TsNxCkLM
"A VERY SIMPLE STRING"
"A MULTI-LINEx

* SIRING"

BCPL. REFERENCE MANUAL Page 15
EXPRESSIONS
2.8 BRACKeTED EXPRESSIONS
Brackets in bracketed expressions serve no other purpose
than that of overriding the normal priority of evaluation
of an expression. -
Example.
A - B+ C~-D1s evaluated as [[A - Bl + Cl1 - D
(where [] indicate the priority of evaluation)
but
A- (B+C)~-D 1is evaluated as [A - [B + Cl]]l - D
which may yleld a very different result.
2.9 VALOF
VALOF <C»>
The value of a VALOF expression 1s determined by executing
the command <C> (usually a section or a block) until a
RESULTIS command (see 4.22) 1s executed, which causes
executlon of <C> to cease. The value of the VALOF
expression is the value of the <E> expression in the
RESULTIS command.
Example.
FIRSTZERO t= VALOF £(FZ // FINDS FIRST ZERO WORD IN VEC V
LET I = @
UNTIL V!I = 0 DO I t= [+ |
RESULTIS I
£(FZ
2.1¢0 FUNCTION APPLICATION

<E>() or <E>(<El>, «ev..)

The function application is evaluated by first evaluating
the expressions <El>, <En> and assigning the value of <El>
to <En> to the first n formal parameters of the function
<E>. <E> is then entered. The result of the function
application is the value of the expression in the function
definition.

Examples.
CH t= INCH()

LET SINA(X) = (E(X) #- E(#-X)) #/ 2.0
X t= (REAL -> RDF, RDNO) (INPUT)

BCPL REFERENCE MANUAL Page 16
EXPRESSIONS

2.11

UNARY OPERATORS
2.11.1 NOT

This treats its operand as a binary bit pattern and gives
the logical negation of the operand.

Examples.

NOT 7 is equivalent to #7777777177770@
NOT #12345 1s equivalent to #777777765432

2.11.2 @

The address of an expression which represents a siorage
cell may be obtained via use of the @ ogerator. Such

expressions are ! expressions and non MANIFEST names.
Examples.
@A is the address of storage cell A

@(V!6) is equivalent to V + 6
alE is equivalent to E

2.11.3 MONADIC !

The value of a monadic ! expression is the value of the
storage cell whose address is the operand of the !. Thus
@!'E = 1@E = E, (providing E is an expression of the class
described in 2.11.2).

Examples.

X 1= Stores the value of Y into the storage cell
whose address is the value of X.

P = Ip Stores the value of the cell whose address
is the value of P, as the new value of P.

2.11.4 MONADIC PLUS AND MINUS

Monadic plus is in effect a null operation, it is provided
for completeness. Monadic minus provides the negative of
its operand. The # versions are used for real operands.

BCPL. REFERENCE MANUAL Page 17
EXPRESSIONS

2.12

2.13

2.11.5 ABS AND #ABS

These provide the absolute (i.e. magnitude) of their
operand. The # version is used for real operands.

Examples.

ABS =-» is equivalent to 5
ABS 73 is equivalent to 73

2.11.6 FIX

This gives the Integral value of its real operand, rounded
to the nearest integer. (Rule for rounding is as for
ALGOL 64).

Examples.

FIX 1.432 1s equivalent to |
FIX 73.78 1is equivalent to 74

2.11.7 FLOAT

This gives the real value of its integer operand.

INFIX FUNCTION APPLICATION

This provides a way of intoducing a binary operator which
is defined as a BCPL function and then invoking it as a
function. The form 1s %<name>.

Example.

LET ADD(A,B)Y = A + B // function definition
X = Y #ADD Z // same as Y + Z

VECTOR APPLICATION

Provides a way of selecting an element of a vector. A
vector 1s any set consecutive storage cells, one way of
introducing such a set |is described under vector
declaration (see 3.4.,3).

The basic form of a vector application is EI ! E2.

Notes:—

El t E2 is the same as ! (El + E2)

BCPL REFERENCE MANUAL Page .18
EXPRESSIONS

El ' v is the same as ! E)

E1 ! E2 is the same as E2 ! El

@(El ! E2) 1is the address of cell E2 in vector Eil.

@(El ! E2) s the same as E} + E2

'E is interpreted as monadic (See 2.11.3).
2.14 SELECTORS AND BYTES

2.14.1 SELECTOR AND BYTE CONSTRUCTION

SELECTOR and BYTE are used to construct a special kind of
pointer, wused +to extract a portion of a given word (see
2.14.2 and 2.14,3),

[(On the PDP-10 these are PDP 1@ byte pointers

(BYTE 6330) 1is the bit position field of a byte pointer.
(BYTE 6124) is the byte size field of a byte pointer.
(BYTE 18:@) is the address field (SELECTOR only).!

A byte size of ~| in a SELECTOR or a BYTE construction
gives a full word size byte.

SELECTOR E13E23E3

constructs a pointer to extract a byte of size E! bitsy E2
bits from the right hand end of the word whose address is
given by adding E3 to the value of the right hand operand
of any selector application in which it is used.

BYTE ElsE2
constructs a pointer as above, but without the address

field. BYTE operators act directly on the word indicated
as the object of the BYTE application.

Note.
(SELECTOR E1:E230) 2:@8E3 is equivalent to (BYTE EJ:E2)&&E3

2.14.2 SELECTOR APPLICATION

SELECTOR application is the process of applying a SELECIOR
(constructed as in 2.14.1), to perform a byte extraction
on the given data structure. SELECTOR application 1is
denoted by 21, '

Exampl e.
(SELECTOR 73@t3)11V // refers to a byte 7 bits wide

// in the least significant 7 bits
/7 of the third word of vector V

BCPL REFERENCE MANUAL Page 19
EXPRESSIONS
2.14.3 BYTE APPLICATION

2.15

2.16

BYTE application is the process of applying a BYTE polnter
(constructed as in 2.14.1), to extract a byte from a given

word. BYTE application is denoted by &&.

Example.

(BYTE 18218)88X // left half of X.

ARITHMETIC OPERATORS

2.15.1 IGH PRIORITY OPERATORS

* is integer multiply. e.g. 2% 3= 6

/ is integer divide. e.g. 1 /75 =1

REM is integer remainder. e.g. 1T REM 5 = 2

#* is rounded real multiply. e.g. 2.5 #%x 3.25 = 8.125

#/ is rounded real divide. e.g. B.125 #/ 2.5 = 3.2

** is real raised to integer power. e.g. 3.5 **x 2 = 12,25 //////j'v
The integer (real) operators above interpret the values of |

their operands as 1integers (reals) and yield integer .
(real) results. ’
2.15.2 1OW PRIORITY OPERATORS
+ 1is integer add. e.g., 2+ 3 =5
~ is integer subract. e.g. 2 — 3 = -]
#+ 1s rounded real add. e.g. 2.5 #+ 3.25 = H.7b
#~- is rounded real subtract. €.Q. 2.2 #= 3.25 = #-04.75
The integer (real) operators above interpret the values of
their operands .as integers (reals) and yleld (real)
results.
SHIFT OPERATORS
<< is logical left shift. Zero bits shifted

in on the right, bits lost on the left.
>> is logical right shift. Zero bits shifted

in on the left, bits lost on the right.
ROTL is left rotate. Bits shifted off the left

are inserted on the right.
ROTR is right rotate. Bits shifted off the right

are inserted on the left.
ALSHIFT is arithmetic left shift. Zero bits

shifted in on the right, bits lost on the left.
ARSHIFT 1is arithmetic right shift. Sign bit

shifted in on the left, bits lost on the right.

BCPL REFERENCE MANUAL Page 20
EXPRESSIONS

2.17

RELATIONAL OPERATORS

Inese give the value true or false according to whether
the condition is satisfied. The # versions are for real
value relations. Relations have equal left to right
priority, but the operands are evaluated in left to right
order.

El relopl E2 relop2 E3

is equivalent to

El relopl E2 /\ E2 relop2 E3

except that E2 is only evaluated once.

LS less than LE less than or equal to

#LS less than #LE less than or equal to

EQ equal to GE greater than or equal to
#EQ equal to #GE greater than or equal to
GR greater than NE not equal to

#GR greater than #NE not equal to

LOGICAL OPERATORS

These treat their operands as binary bit patterns.,

/N specifies the AND operation.

\/ specifies the inclusive OR operation.
EQV specifies the equivalence operation.
NEQV specifies the non equivalence operation.

BITAND specifies a bitwise AND operation.
BITOR specifies a bitwise inclusive OR operation.

Examples.

3/\N5 = | 3N/ b5 =17

3 EQV 6 = #777777777772 3 NEQV 6 = 5
3 BITAND 5 = | 3 BITOR b = 7
Note.

The difference between BITAND and /\ (and similarly BITOR
and V), is that /\ and \/ are only supposed to be used on
truth values, whereas BITAND and BITOR are used on any bit
pattern. ‘The effect may best be demonstrated by the
following examplet -

LET A, B=1, 2
IF A /\ B THEN /7 The body will be executed.
IF A BIIAND B THEN // The body will not be executed.

In the first IF, A is interpreted as TRUE (i.e. not
FALSE) also B is Interpreted as TRUE (i.e. not FALSE) and
s0 the body of the IF will be executed. In the second IF,
the operation A BITAND B will yield ¢ (FALSE) and so the
body of the IF will not be executed. This difference of

BCPL REFERENCE MANUAL Page 21
EXPRESSIONS

interpretation only applles in the interpretation of
conditional expressions and conditional commands. (See
2.19 and section 4). . /

2.19 CONDITIONAL EXPRESSIONS
<El> ~> <E2>, <E3»

The expression <Ei> is evaluated and if it yields the
result not FALSE then the expression <E2> is evaluated as
the result of the conditional, 1f <EI> however ylelds
FALSE then the expression <E3> is evaluated as the result
of the conditional.

Example.

A>B-> A, B // gives as result the larger of A and B.

2.20 TABLES

TABLE <L-list>

The value of a TABLE is a polnter to a SIATIC list which
contains a set of initial values. It can be used as a
vector. All the elements of the table must be load time
constants or compile time constants (see 2.21).

Examples.

TABLE |, "ONE", @NE, 2, "TWO", @TWO, 3, “"THREE", @THREE
DAY 1 (TABLE MMON# ,u TUEY (M WED® (HTHUH MFRIM MSATY "SUN")

2.21 CONSTANT EXPRESSIONS
2.21.1 SEMANTICS

The BCPL compiler attempts to reduce all expressions, or
parts of expressions, by evaluating the constant part. A
compile time constant is one in which the expression can
be reduced totally to a single constant. There are some
places (e.g. vector declarations) where this is required,
and others where the compiler can shorten the code it
produces if it finds such a constant (see 5.7).

BCPL REFERENCE MANUAL

EXPRESSIONS

2.21.2 COMPILE TIME CONSTANTS
Consist of any expression containing onlyt-

<name> (manifest only)

<integer>

<real>

<octal>

<charconst>

<truthvalue>

fconstant

<inop> (except @ !)

<binop> (except %name ! 11)

<El> => <E2>, <E3»> (providing El is a compile time
constant and that either E} yelilds
not FALSE and E2 15 a compile time
constant or E] yields FALSE and E3
1s a compile time constant).

2.21.3 LOAD TIME CONSTANTS
Consist of any expression contalning only:
Any compile time constant.

<string>

<literal>

TABLE <E-list>

€ <name> (which is of STATIC data type)

<El> ~> <E2>, <E3s> (providing E! is a compile time
constant and that either E| yields
not FALSE and E2 is a load time
constant or El yields FALSE and E3
is a load time constant).

VEC <K»> which gives a pointer to .a STATIC

Page 22

uninitialised vector of K words long,

BCPL REFERENCE MANUAL Page 23

DECL.ARATIONS
3.9 DECLARATIONS
3.1 SYNTAX OF DECLARATIONS
<D> ti= LET <dec1> <AND <decli>>* | STATIC <body> !
MANIFEST <body> ! EXTERNAL <E>*% <body> |
GLOBAL <body>
<decl> 3= <name>(<name list>*%x) < = <E> | BE <C>> |
<name> = <E> ! <name list> = <E-list>
<body> ti= £{ <def> <3 <def>> L)
<def> 3= <name> = <E> ! <name> 3 <E>
3.2 SEMANTICS OF DECLARATIONS (SCOPE AND EXTENT)

Declarations are used tp associate names with values,
these values| are either constant (MANIFEST) or the
addresses of storage cells.

The SCOPE of a \name N is the textual reglon_of the program
in which that name can be used to refer to the same data
item. The EXTENT of an item is its period of existence.
There are two underlying types of data item, DYNAMIC and
STATIC. DYNAMIC data items are allocated space on a STACK
when they come into existence. The space which they are
allocated becomes available for reuse when they cease to
exist. - Thus if a function or routine 1is called
recursively, there may be more than one {instance of a
dynamic data item on the stack. STATIC data items exist
for the whole execution of the program, there is only one
copy of a static item.

A DYNAMIC data item may only be referred to within the
body of the routine or function in which it is declared.
It may not be referred to in any other function or
routine.

Two data items with the same name may not be declared

(either explicitly or 1implicitly) in the same block or
formal parameter list.

Example.

LET A, B
LET F(X)

1, 2
A*x X+ B

it

is {llegal, but may be rewritten as

STATIC £(A=13 B=2 L)
LET F(X) = A = X + B

BCPL REFERENCE MANUAL Page 24
DECLARATIONS

3.3 STATIC DECLARATIONS
(STATIC, LABELS, ROUTINES AND FUNCTIONS)

3.3.1 SIATIC

SIATIC £(<name> <t!=> <[> < 3 <name> <¥l=> <L>>% £)

This declares static data items whose scope Is the rest of
the block body in which the declaration appears, and whose

extent is the entire program execution. It declares

the

<name>s to be associated with the data items which are

initialised at start of execution of the program to

the

value(s) (<L>) given. The value(s) may be any load time
constant or compile time constant (see 2.21).
Exceptionsi~ NIL and VEC glve uninitialised static areas.

Examples.

STATIC £(X = ¥ £)

STATIC £(ENDROUTINE = @ENDR3 MESSAGE = "TERMINATOR" £)
SIATIC £(IOVEC = VEC 6543 INPUT = NIL3 OUTRUT = NIL £)

3.3.2 LABEL
<name>?! <C>

This declares a static data item whose scope 1is

the

command sequence of the BLOCK in which the label appears
and whose extent is as for all static data. It declares
the <name> to be associated with a data item which is

initialised at start of execution of the program to

the

address of the point of code av which the label appears.

Because a label is a static data item, it may be used

in

any expression, or be assigned to. If its value is
altered during execution of the program, then any further

use of the label (even in GOTOs) will refer to the
value.

Example.

GOTO ! ((TABLE @ADD, @SUR, @MUL, @DIV)!op)
ADD: RES = A + B 3 GOTO END

SUB: RES := A ~ B 3 GOTO END

MUL® RES := A x B 3 G0TO END

DIV: RES t= A/ B

END3

new

BCPL REFERENCE MANUAL Page 25
DECLARATIONS

3.3.3 ROUTINES

LET <name>{(<name list>) BE <C>
LET <name>() BE <C>

These define a routine, and an assoclated. static data
item, whose scope i5 the declaration itself and the rest
of the block body in which the declaration appears, and
whose extent 1is as for all static data. It.defines the
<name> to be assoclated with the data item which "is
initialised at the start execution to point to the code of
the routine. Because a routine is thus a static data item
it can be used In any expression and assigned to. If the
value of the data item is altered during execution of the
program, then any further invokation of the routine will
refer to the new value.

A routine does not yield a value and hence should not be
used in expressions, but only as a command.

Example.

LET OUTPN (N) BE

£(IF N GR 9 DO QUTPN (N/1@)
OUTCH (N REM 14 + 747)

£)

3.3.4 FUNCTIONS

LET <name>() = <k>
LET <name>(<namelist>) = <E>

Functions have the same semantics as ROUTINES (see 3.3.3):
except that functions yield a value and thus may appear in
expressions.

Examples.
LET FACTORIAL(N) = N = @ -=> 1, N % FACTORIAL (N=-1Y

LET ALPHA(CH) = VALOF

£(IF /A7 LE CH LE #Z7 DO RESULTIS TRUE
WARN(CrD)
RESULTIS FALSE

£)

BCPL REFERENCE MANUAL Page 26
DECLARATIONS

3.4

DYNAMIC DECLARATIONS (FORMAL PARAMETERS AND LET)

3.4.1 THE STACK

The STACK is used for all DYNAMIC data items. Spac is
allocated to the formal parameters of a routine\ or
function #hen the routine or function 1is called, 0d
subsequently space is allocated to local variables as each
block in turn is entered. The space used for a) formal
parameters and b) local variables is returned
autematically to the stack for reuse when a) the function
or routine 1is terminated or b) the block is exited. All
dynamic data items thus have the SCOPE of the declaration
itself and all enclosed blocks, their EXTENT 1is the
duration of execution of the block (or in the case of
formal parameters - the routine or function).

3.4.2 FORMAL PARAMETERS

The appearance of a formal parameter in the namelist in a
routine or function definition (see 3.3.3 and 3.3.4)
defines a dynamic data item on the stack (see 3.4.1).
Formal parameters may or may not be initialised according
to whether or not a corresponding actual parameter appears
in the call of the routine or function. Formal parameters
are allocated consecutive cells on the stack, thus the
address of the second formal parameter is the address of
the formal parameter + |, etc. All parameters in BCPL are
passed by valwe, thus changing the value of a formal
parameter will not change the value of the corresponding
actual parameter. “Call by reference” can be achieved by
using the @ operator in the call of a rautine or function
and the ! operator when referring to the parameter in the
body of the routine or function.

Examples. See 3.3.3 and 3.3.4

3.4.3 (DYNAMIC) LET

LET <namelists
LET <namelist>

<E-list>
VEC <K> <, VEC <K>>*

[]

These forms of the LET declaration are used to define
dynamic data items on the stack (see 3.4.1). The simple
(first) form 1s used to define individual data items.
vhen execution reaches the declaration on entry to the
enclosing block, then the data item comes into existence
and is initiallsed to the value <E> (unless <E> is NIL, in
which case the data item is uninitialised).

The vector (second) form is similar to the simple form,

BCPL REFERENCE MANUAL Page 27
DECLARATIONS

3.5

except that the data item is initialised to the address of
a vector (set of consecutively addressed cells) on the
stack, whose subscript range is from zero to <K> (a
compile time constant — see 2.21.2). The vector itself
has the same EXTENT as the dynamic declaration in which it
is defined. Simple LETs and vector LETs can be mixed
together in ESSEX BCPL.

Examples.

LET IOV = VEC 650
LET 1oVP, IOVI = IOV, IOV + 650
LET v, P, X = VEC 3, NIL, O

3.4.4 WHERE
<C> WHERE <decl>

WHERE is used to associate a declaration with a particular
command, it thus makes the declaration local to the
command. The SCOPE of a WHERE declaratlon is the command
which the ~WHERE follows, the EXTENT is as for other
dynamic declarations. A WHERE can introduce any
declaration normally introduced by LET. (See 3.3.3, 3.3.4
and 3.4.3).

Examples.

OUTS(DAY!TAB) WHERE TAB = TABLE
"Mon" , "Tue", "Wed", "Thu", "Fri%,"Sat", *Sun"

N 1= F(X) WHERE F(N) = N =@ -> 1, N * F(N~I)

SIMULTANEOUS DECLARATIONS (AND)

AND joins together any declarations normally introduced by
LET or WHERE, and 1is used to common the scope of the
declarations, usually so that the body of one or more of
the declarations may contain references to the name(s) of
the data item(s) declared in the other declaration(s).

Examples.

LET A, AV = @BV, VEC 6
AND B, BV = @AV, VEC 6
LET F(X) BE G(X + 1)
AND G(X) BE F(X - 1)

BCPL REFERENCE MANUAL Page 28
DECLARATIONS

3.6

3.7

MANIFEST DECLARATIONS
MANIFEST £(<name> = <K» <3 <name> = <K>>% f)

I'nis declares each <nhame> as a manifest constant \whose
value 1is ‘the expression <K> which must be a compile\time
constant (see 2.21.2). Wherever the <name> appears, it is
used as if it were a numeric constant. Manifest constants
serve three very useful functions. Firstly they. enable
the programmer to give mnemonic names to constants, which
aid readability of the program. Secondly they can be used
for constants which may change in further compllations,
such as vector sizes. Thirdly, they can be used to write
machine independent programs that depend on machine
dependent factors, such as the number of characters held
in a word etc. The scope of a MANIFEST declaration is the
rest of the block body in which the MANIFEST is declared,

Examples.

MANIFEST £(WORKSIZE = 10243 BELLCHARACTER = #7 1)
LET V = VEC WORKSIZE

MANIFEST £(MAXSTRLENGTH = 1273 CHARSPERWORD = 5 £)
LET PACKVEC = VEC MAXSTRLENGTH/CHARSPERWORD + |

INTER-FILE AND LIBRARY COMMUNICATION (EXTERNAL AND GLOBAL)
3.7.1 USE OF EXTERNAL AND GLOBAL

EXTERNAL and GLOBAL provide a mechanism by which statice
data items within a file can be referenced from within
another file. This serves two purposes. Firstly, the
programmer can split. his complete program into small
manageable pieces (individual files), which can be
seperately compiled and then loaded together by the system
loader and executed. This means that if a "bugh s
detected, and one plece (file), requires alteration, then
only that piece (file) need be recompiled. This results
in a considerable saving in machine time. Secohdly, a
standard library of pre-compiled BCPL files containing
routines and functions can be made available to all users.
Such a library, containing a complete Input/Output system
and many other usefnl routines, exists for ESSEYX BCPL. It
(and the way of communicating with it-via a standard set
of EXTERNAL Jdeclarstions) is described in section 6 of
this manual.

BCPL. REFERENCE MANUAL Page 29
DECLARATIONS -

3.7.2 THE EXTERNAL DECLARATION

EXTERNAL <prefix>*x £(<definition> < i <definition>>% L)
<prefix> t1= <name> i <string>
<definition> = <inname> | <inname> = <extname> H
<inname> * <extname>
.

<extname> 11= <pame> | <string>
<inname> 1= <pame>

The internal name <inname> is the name by which the item
is known WITHIN the scope of the EXTERNAL declaration
(which is the remainder of the block body in which the
declaration appears).

The external name <extname> 1s the name_by which the item
is known OUTSIDE the scope of the EXTERNAL jeclaration.
If the <extname> part is missing, <inname> |is used. On
the PDP-14, because of a system loader restriction, only
the first 6 characters of the external name are used for
inter—-file communication.

The <prefix> part, if it appears, is prefixed to the
external name. It is intended for use mainly with library
names in order to help make the external names within the
library unique and protected.

EXTERNALS are used by putting the same EXTERNAL
declaration at the top of each file in which the :ata is
referenced (including the file in which the itew is
defined). All references to the internal name of a Jata
item within the scope of the EXTERNAL declaratinn cause
referance to be made to 1ts external name. A static
declaration (either implicit - labels, functions, routines
- or explicit — STATIC) within the scope of the LXTERNAL
declaration defines the static as normal and makes the
external name available to other files.

Examples.

EXTERNAL £ (READPHASE £)
EXTERNAL "%® £(OUTNO 3 WRITENO : WRNO £)

3.7.3 THE GLOBAL DECLARATION
GLOBAL £(<name> &t <K> < § <name> * <K>>x L)

GLOBAL has been retained in ESSEX BCPL for historical
reasons. and because programs obtained from other sources
may rely on them. EXTERNAL provides a much more powerful
mechanism for interfile communication.

BCPL REFERENCE MANUAL Paye 30
DECLARATIONS

Now GLOBAL items are treated as if they were EXTERNAL and
the rules for EXTERNAL now apply to GLOBAL. GLOBAL
declarations are processed as followsi-

For positive global offsets.
GLOBAL £(namesn L) 1is equivalent to
EXTERNAL ".G" £(name:"n" L)

For negative global offsets.
GLOBAL £(name:n £) 1is equivalent to
EXTERNAL ".N" £(namet'n" £)

where "n" is expanded to 4 digits with leading zeros Iif
necessary.

Example.

GLOBAL £(PRINT:37 £)
equivalent to EXTERNAL ®.G" £(PRINT:"J@37" £)

Unless all GLOBALs in a program have associated static
data items, the segments that use GLOBAL should have
£1.IBRARY "BCL:GLOBAL"Y

in them to satisfy GLOBAL references between -290 and +48J -
with no associated STATICs.

Note. The assumption that global 1items appear next to
each other in a consecutively addressed vector at run time
will probably cause failure in this implementation.

3.7.4 SPLITTING UP A BCPL PROGRAM

This is done by putting routines and functions that can be
seperately compiled into different files. Communication
is then achieved between files using the EXTERNAL
facility. It is usually advisable to put such EXTERNAL
declarations into a GET file (see 5.1), so that if it is
necessary to change the external name of an EXTERNAL then
only one alteration need be made to the source files and

there is less chance of error occuring.

BCPL REFERENCE MANUAL Page 31
COMMANDS

4.3 COMMANDS
4.1 SYNTAX OF COMMANDS

<C> 3t= <I[F!UNLESS {WHILEIUNTIL> <E> DO <C> |
TEST <E> THEN <C»> OR <C»> !
SWITCHON <E> INTO <C> 1
FOR <name> = <E> TO <E> <BY <E>>*% DO <C» |
<name>t1<C> ! CASE <E><...<E>>*%t<C> '
DEFAULT <<E>...<E>>%*3<C> | <C> <> <C> |
<C> REPEAT | <C> <REPEATWHILE!REPEATWHILE> <E>
<«C> WHERE <D> <AND <D>>% |
GOTO <E> { RESULTIS <E> | BREAK . LOOP
RETURN ! FINISH : ENDCASE !
£(<Ds#% <C>#% £) ! £l <codeblock> £1 3
<E>()) <E>(<E~-list>)
<E-list> t= <E~list> 1
<E-1ist> <binopas= <E-list> |
TRACE <name> () ! TRACE <name>(<E-11st>)

4.2 SECTIONS
£(<D>%*% <C>*% L)

Sections are either blocks or compound statements
depending on whether they contain any declarations or not.
I'hnis is only semantically important in that a block is
scanned for labels and a compound statement 1is not.
Syntactically they both provide a mechanism for qgrouping
statements together. A machine code block is a special
case, it is described in Appencix D.

4.3 SIMPLE ASSIGNMENT
El 3= E2

E2 is evaluated then the result 1is stored in the item
denoted by El. El should be elther an expression which
represents a storage cell or a selector or byte expression
which indicates that the specified byte 1is to be
overwritten with the value E2 (truncated if necessary).

Examples.

X =Y

IV s= ¢

Vit 3= |

(BYTE 6112)88Z := Q

BCPL. REFERENCE MANUAL Page 32
COMMANDS

4.4

4.6

MULTIPLE AGSIGNMENT
<E-list> = <f-list>

Example.
Same as in 4.3, but order of evaluation undefined.

Xy 1V, VI, (BYTE 6:12)R87 = Y, ¥, 1, Q@

LEFT nAND SIDE FUNCTION APPLICATION

If a function application appears on the left hand side of
an assignment then the function is called as a routine
with an extra parameter. Viz the valile on the right side
of the assignment. A routine invoked in this way will get
the reply TRUE from the library function LHS (see 6.6.3).
Useful for modelling arrays.

Example.

ARRAY(X,Y) 3= D
- 1Is equivalent to the command
ARRAY (X,Y,2)
but LHS() will return TRUE in the first
case and FALSE in the second.

UPDATE ASSIGNMENT
<E~list> <binop>i= <E-]list»>

This represents an update assignment (<binop> can be any
binary operator except “<name>). <hbinop>:= can be used
instead of f= in all cases 1iscussed in 4.3, 4.4 and 4.5,

El <binop»>s= E2 is equivalent to El := Ej <binop> E2
EV1(E5,E8) <binop>t= E2 ig equivalent to
EI(E5, E6) 1= E|(E5, E6) <binop> E2

Examples.
X +2= | updates X by |
V 1= 9 assigns 31V to v

- ROUTINE APPLICATION

<E>() or <E>(<E-list>)

This is similar to function application (see 2.19) except
that no result is returned. .

BCRL REFERENCE MANUAL

Page 33

COMMANDS

Example.

PRINT.("PRINT CALLED™)

RETURN

This command is used to return control from the currently
active routine to its point of invokation.

GOTO
GOTO <E>

The expression is evaluated to yield a value (assumed to
be a label in the program) to which control is passed.
Control should not be passed to labels outside the
function or routine in which the GOTO appears. Such
transfers should only be performed by the library routines

~ LEVEL/LONGJUMP or LABEL/JUMP. (See 6.5.5 to 6.6.3).

4.10

4.11

Examples.

GOTO NEXT
GOTO X = Y -> EQUALS, NOTEQUALS

IF
IF <E> DO <C>

<E> is evaluated and if the resull is not FALSE <C> s
executed,

Example.

IF TRACING DO PRINT("ENTERED™)

UNLESS
UNLESS <E> DO <C»>

<E> is evaluated and if the result is FALSE, <C> is
executed.

Example.

UNLESS N=@ DO PRINT(N)

BCPL

4.12

4.13

4.15

REFERENCE MANUAL, Page 34
COMMANDS

TEST
TEST <E> THEN <Ci> OR <C2»
<E> is evaluated and If the result is not FALSE, <Cl> is
executed, otherwise if the result of <E> is FALSE, <C2> is
executed,

Example,

TEST REAL THEN RES t= A #+ B OR RES := A + B

WHILE

WHILE <E> DO «<C>

A) <E> is evaluated

B) if the result is not FALSE, <C> is executed and
control returned to A), otherwise the WHILE
command is terminated.

Example.

WHILE “A4 LE CH LE 427 DO €H 1= INCH()

UNTIL
UNTIL <E> DO <C»>

A) <E> is evaluated

B) if the result is FALSE, <C> is executed and
control returned to A), otherwise the UNTIL
command 1s terminated.

Example.

UNTIL FINISHED DO ROUTINE()

FOR
FOR <name> = <Ei> TO <E2> <BY <K>>#% DO <C>

The FOR command is best described by giving the semantic
equivalent which ist-

BCPL

4.16

REFERENCE MANUAL Page 35
COMMANDS

£(LET <name> = <E1>
LET ? = <E2>
UNTIL <K> > @ -> N GR ?, N LS ?2 DO
£(<C>
<name> +i= <K>
£1)
£)

If «BY <K»>> is omitted <K> is assumed to be 1. ? is a
compiler generated local variable, note that <name> is
implicitly declared as a local (dynamic) variable by the
FOR command and has only the scope shown in the semantic
equivalent above.

Examples.

FOR 1
FOR I

@ TO 16 DO V!l 1= @
START() TO END() = 1| BY =5 Do STEP(I)

W

REPEAT
<C> REPEAT

<C> is repeated indefinitely. <C> is usually a section
containing a BREAK command to terminate the repetition.

Example.
£(1F v = @ DO BREAK

vV 1=
£) REPEAT

REPEATWHILE

<C> REPEATWHILE <E>

A) <C> IS EXECUTED. L
B) <E> is evaluated and if the result is not FALSE control
{s returned to A), otherwise the REPEATWHILE command is
terminated. ’

This differs from WHILE in that in this case <C» is
executed at least once. ‘

Example.

CH t= INCHO) REPEATWHILE “A7 LE CH LE 727

BCPL REFERENCE MANUAL Page 36
COMMANDS

4.18

4.20

REPEATUNTIL
<C> REPREA[LUNTIL <E»>

A} <C> i35 executed.

B) <E> is evaluated and if the result is FALSE control is
returned to A), otherwise the REPEATUNTIL command 1is
terminated.

This differs from UNTIL in that this case <C>» is - executed
at least once.

Example.

ROUTINE() REPEATUNTIL FINISHED

LLOOP AND BREAK

These commands can appear in the body (<C>) of any of the
loop commands. (i.e. those described in sections 4.13 to
4.18). BREAK transfers control to immediately after the
loop command. LOOP transfers control to -

The start of the command for WHILE, UNTIL and REPEAT.
The test for REPEATWHILE and REPEATUNTIL.
The increment and test for FOR. :

Example.

FOR I = | TO 1¢8¥ DO

£C IF V!II = @ DO BREAK //7END OF VECTOR
IF VII < @ DO LOOP //IGNORE NEGATIVE
RPOS(V, I)

£)

SHITCHON, CASE, DEFAULT AND ENDCASE
SWITCHON <E> INTO <Ci>

Where <Cl> 1s wusually a compound statement containing
labelled commands of the form:-

CASE Kt <C2»>
DEFAULTs <C2>

<E> is evaluated and compared with the values <K> of the
CASE labels, if a match is found then control is passed to
the command <C2> following the CASE label. If no match is
found then control is passed to the DEFAULT case. IF
there 1is no DEFAULI case an automatic ENDCASE is
performed. <K> must be a compile time constant (see
2.21.2).

BCPL REFERENCE MANUAL Page 37
COMMANDS

An ENDCASE command causes control to pass immediately to a
point just following the command <Cl>, that is it
effectively ends the execution of the SHITCHON command.

Two further CASE and DEFAULT constructions are available,
they arei—

CASE <KI> ... <Knp1 <C2>
which is equivalent to
CASE <K1>t CASE <K2>t etc to CASE <Kn>: <C2>

and

DEFAULT <K1> ... <Kn>: <C2>
which tells the compiler that <E> in the SWITCHON will
always lie in the range <K1> to <Kn>. (This may enable
the compiler to produce faster code under certain
circumstances).

Beware, the construct <Ki> ... may be confused by the
compiler as a badly written real numbher if A) <Kl> is an
integer and B) no .space {s left between <KI> and the
Lees’e Remember that 7.7 is also a vaild character in a
BCPL name (see 2.4), soO the compiler will read ’A...B” as
a single name and not & CASE range.

Example.

MANIFEST L CHA=/A’3 CHZ=’Z‘ L)
SNITCHON NEXT() INTO '
L(CASE CHA ... CHZ: ALPHA()3 ENDCASE
CASE #0” ... 7973
CASE 7 .73 NUMBERQ): ENDCASE
CASE #177t CASE 03 ENDCASE
DEFAULT O ... #1773 ERRORC)
£)

FINISH

This command causes execution of the program to cease.

RESULTIS
RESULTIS <E>

This command is used to return the value of the expression
<E> as the result of a VALOF expression (see 2.9).

BCPL

4.23

4.24

4.25

REFERENCE MANUAL Page 33
COMMANDS

LABELS
<name> i <C>

This makes the- <name> known as a static data item, which
is initialised at start of execution of the program to the
address o;)the point of code at which the labels appears.
(see 3,3.2).

VERY BINDING SEMICOLON
<Cl> <> <C2»

This is used to join commands together as if they were a
section. It is equivalent to writing

£(<Cl>3 <C2> &)
but is more convenient to write and often more readable.
Example.

IF LIST = ¥ DO LIST 3= NEWVEC(3) <> LISTI® 1= 4

TRACE

TRACE <name> ()
TRACE <name> (<E-list>)

This command creates a pseudo routine call to a trace
package. It 1is only compiled 1If the program is being
compiled with postmortem code. The <E-list»> expressions
together with the <name> (which 1s used to identify the
particular TRACE command) are passed as parameters to the
trace package. The normal call format is a similar
parameter list to that expected by OUT (see 6.4.8).

In the PDP-18 implementation TRACE points are always
handled by the default library when the compiled program
is running in a batch mode. If the compiled program is
running interactively then the user is queried on the
first encounter of each TRACE point as to whether he
requires the trace information or not.

Example.

TRACE BREAK! (#TOP=18, CHAIN=:8*CxL", Li88PTR, RHR&PTR)

BCPL REFERENCE MANUAL Paje 39
PROGRAMMING AIDS

5.0
5.1

PROGRAMMING AIDS
GET
GET "PDP-1@ FILESPEC"

This directive may occur anywhere in a BCPL file on a line
by itself. The GET directive is replaced by the text of
the specified flle.

It is used to read in a common piece of BCPL source text,
and as such is usually used for common MANIFEST, EXTERNAL
and GLOBAL declarations. These can be kept in a single
file, which is compiled with all the files of a complete
program. As described in 3.7, equivalent EXTERNAL (and
GLOBAL) declarations should appear at the top of each flle
in which the EXTERNALs (or GLOBALs) are used or defined.
GET provides the mechanism for doing this economically
without the risk of writing the declarations differently
in separate files.

The- EXTERNALS used ~ for the BCPIL. library described In
section 6 are declared in a single GET file
"BCLtBCPLIB.GET".

The default device, extension and ppn are
DSK3filename.GET[user]

or failing that

DSK:filename.BCLLluserl.

THE START ROUTINE

By convention execution nof a BCPL program starts at the
routine named START which should be supplied by the user
and declared to be EXTERNAL. (Such a declaration exists
in BCL:BCPLIB.GET - see section 6).

LAYOUT CONVENTIONS
5.3.1 SEMICOLONS
Semicolons between commands (declarations) in a section

may be omitted provided that the commands (declarations)
are each written on separate lines.

BCPL REFERENCE MANUAL Page 42
PROGRAMMING AIDS

5.3.2 CONTINUATIUON OF EXPRESSIONS

Expressions may be written on more than one line, provided
that each line ends with a dyadic operator, or in the case
of an <E-~list>, a comma.

Examples.

A+ B+
C

TABLE 0, 0, O,
0, 0, 0

5.3.3 OMISSION OF DO OR THEN

The keywords DO and THEN are interchangeable, and may be
omitted (when no ambiguity occurs from doing so).

Example.
IF X=0 X:=3
but beware of

IF X=0 1X:=3

5.3.4 TAGGING OF SECTION BRACKETS

Section brackets may be tagged with either a BCPL name or
a positive integer. The tag must be connected to the
bracket with no space between. Tags serve two . purposes,
one is to name a section to give readability, the second
is to ensure section brackets are closed. A tagger
closing bracket closes all unclosed brackets up to the
matching named bracket.

Example.

ECA
£01 .
£(2 £)A
is the same as
£(A
£01
£02 £)2 £)1 £)A

BCPL REFERENCE MANUAL Page 41
PROGRAMMING AIDS

5.4

COMMENTS

There are three ways of introducing comments into a BCPL
segment.

Comments introduced by

// continue up to the end of the line
/% continue up to a matching */

The sequence

Y. and any characters up to a (
is equivalent to a comma.

Example.

LET F(S). APPLIED TO (M) BE
/% TESTS M TO SEE IF POSITIVE |
AND THEN APPLIES S TO IT */ i
£(F 1F M>=0 DO S(M) <> RETURN
IF S=SORT DO ERROR(M) // SQRT OF NEG NO. FORBIDDEN
£)F

INPUT FORMAT

The Input lines to the BCPL compiler may contain up to 150
characters and should be terminated by a carriage return-
line feed sequence. All input files are read 1in ascii

line mode, editor line numbers are ignored, but listed 1f
listing enabled.

LISTING CONTROL

The following escape words are used only to control the
compilers listing of the source program.

£NOLIST Turns listing off, unless /L or /C
compiler switch is on.

£1LIST Turns listing back on.
£EJECT Skips listing to the top of a new page.
£SPACE n Skips n lines in the listing.

BCPL. REFERENCE MANUAL Page 42
PROGRAMMING A IDS

5.7

CONDITIONAL COMPILATION

If the expression which controls the execution of a
command 1is a constant, and the value of the constant is
such that it would inhibit the execution of the command,
then the <compiler will not plant the code for that
command, unless it contains an alternative way of entering
it (e.g. via a label). Commands that fall into this
category are IF, UNLESS, TEST, wWHILE, UNTIL, REPEATWHILE
and REPEATUNTIL. Conditional expressions are treated in
the same way.

Example.
IF DEBUGGING DO OUT(®SUBROUTINE ENTERED")

If DEBUGGING 1s a manifest constant and if its value is
FALSE then no code at all would be planted for the above.
If its value 1s TRUE then the code planted would only be
for

OUT(N"SUBROUTINE ENTERED")

During program development debugging code can be enabled
with a MANIFEST constant set to TRUEs when the program is
complete and working the debugging code can be effectively
removed Jjust by recompiling with the same MANIFEST
constant set to FALSE.

Two further kimds of conditional compilation are
available.

a) LTRACE returns TRUE or FALSE according to whether the
program 1is being compiled with postmortem code enabled or
not, and can be used in conjunction with the feature
described above.

b) Comments of the form

//% comment

are normally ignored by the compiler. If, however, the /U
compiler switch is turned on then the //? 1itself is
ignored and the rest of the line compiled as if it were
not a comment.

USER LIBRARY AIDS

The following are produced for aiding the preparation of
libraries of user programs. They cause entries to be made
in the LINK loader tables type 4, 16 and 17, prospective
users of these should familiarise themselves with the
functions of these tables.

£ENTRY ¥<name>" Puts <name> in the ENTRY
block.

BCPL REFERENCE MANUAL Page 43
PROGRAMMING AIDS

i

£NEEDS #pPDP 1w FILE SPEC® Causes the specified file to
be loaded with this sejment
and prior to searching any
libraries.

£LIBRARY "PDP 10 FILESPEC" Causes the specified file to
be searched at the end of
normal loading but prior to
the system library search,
for any unsatisfied external
references.

LLDTEXT “STRING" Causes the string to be put
out as it appears inlo the
code file.

Any EXTERNALS defined within a flle that do not appear in
a L£ENTRY will be of type INTERNAL. 1.E. they will
satisfy any references if the file |is loaded, but a
reference will not cause the loader to load the file.

VERSION NUMBER

EVERSION n will set the version field to n in the loaded
program. n should be an octal constant.

BCPL REFERENCE MANUAL Page 44
THE BCPL LIBRARY

6.4
6.1

6.2

_EXTERNAL or CLo AL

. the loader af er,a

THE BCPL LIBRARY

e

THE STRUCTURE OF THE LIBRARY

mpile files of a . complete brogram)
k _them ' together at load timq_using”“
eclaration (see 3.7). ”h e

It is possible ‘to
separately . and.:

The BCPL library pnsists of a collection of BCPL routines
in a2 system; f *(SYStBCPLIB.REL), which is searched by
“the user supplied files have “Been-
loadeds any RNAL names referred to, but not defined
in the user: re searched for in the library: and, if
found, the:ic¢o ode is loaded.

GET contains EXTERNAL declaratlons for

The file BCL#BCP
ed routines, which are described in this

the more widel:
section.

A standard header file (such as BCL:BCPLIB.GET) should
always be wused for communication with a library, as the

loader names of the library routines may be changed ' from -

time to time but the “internal’” names, used below, will
always remain the same.

There are many more routines iIn the library than are

‘listed below. The other routines, and some other useful

libraries are described in the BCPL USER GUIDE.

INPUT AND OUTPUT SPECIFICATION

- 6.2.1. STREAMS AND STREAM CONTROL BLOCKS

The basic primitive -of- the-BERL inputloutpul sysStem- is—the-
STREAM. Within a BCPL program, a stream corresponds to a
file on an external medium (such as a disc or a teletype).
Routines for reading and writing manipulate - data

- structures called STREAM CONTROL BLOCKS, which contain all

.the information necessary to communicate with the external

media (with the help of the PDP-1d monitor). Stream
control blocks are sometimes known as SCBs. Further
details of SCBs can be found in Appendix H.

in general, communicatian with external media follows the

‘schema below!-

l+ Create a stream which corresponds to the external
file, (usually by one of the functions which follow),
assign the SCB corresponding to this stream to some
variable.

2. Perform the 170 functions required.

BCPL. REFERENCE MANUAL Page 45
THE BCPL LIBRARY

3. Inform the I[/0 system that the stream is no longer
required.

6.2.2 FINDFILE

Finds a monitor input stream. This takes the following
parameter lists-

FINDFILE(DEV,FILE,EXT, PPN, ERROR,MODE ,BUFFS, PROT, TIME ,DATE)

the parameter list may be abbreviated to cover as few
parameters as the user wishes to supply. Any which are
omitted will be defaulted to zero. If a completely null
parameter 1list is given then the standard teletype stream
(TTY) is returned.

DEV is the device in sixblt or BCPL string form. Zero
implies “DSK".

FILE is the filename in sixbit or BCPL string form.

EXT is the file extension in sixbit or BCPL string
form.

PPN contains in the left half word the project number
and In the right half word the programmer number.

ERROR should be an error label constructed via the LABEL
routine (see 6.6.7) this is JUMP’ed to if an 1/0
error OCcurs.

MODE is the PDP 10 1/0 mode.

BUFFS the number of buffers. Zero implies the default
for the device.

PROT as defined for the monitor LOOKUP/ENTER block.
TIME as defined for the monitor LOOKUP/ENTER block.
DATE as defined for the monitor LOOKUP/ENTER block.

FINDFILE returns a SCB for use with the routines described
in section 6.3. The space for the SCB and any required
buffer space is obtained via a call to NEWVEC (see 6.9.4),
so INITIALISEO (see 6.5.2) should have been called before
any calls to FINDFILE are made.

[The size of the SCB allocated by FINDFILE is controlled
by the static OSCBSIZE (see BCL:SCB.GET) which may be
increased by the user before «calling FINDFILE if extra
space in the SCB is required.]

The LOOKUP/ENTER block used is the 4-word block, as

BCPL. REFERENCE MANUAL Page 46
THE B8CPL LIBRARY

described in the DECsystem—1¢ Monitor Calls Manual.
Example.

INPUT = FINDFILE("DSK®", "TESTw, “SRCH)

6.2.3 CREATEFILE

Finds a monitor output stream. It has the same parameter
specifications as FINDFILE. The SCB returned can be used
with any of the routines described in Section 6.4.

6.2.4 UPDATEFILE

Finds a monitor update stream, which can be used for both
input and output. It has the same parametfer
specifications as FINDFILE. The SCB returned can be used
with any of the routines described in sections 6.3 and
6. 4.

6.2.5 FINDTTY

This function which takes no parameters returns a pointer
to the 5CB for the jobs controllng stream (TTY). This
corresponds to the user”’s console for 1interactive users,
or the command/log file for batch users. The SCB returned
can be used with any of the routines described in sections
6.3 and 6.4.

Exampl e.

OUTPUT 2= FINDTTY()

6.2.6 TIY

This is a static in the library which is set initially to
point to the SCB for the the jobs controlling stream (see
6.2.5). This stream can be used for both input and
output.

6.2.7 INPUT, OUTPUT, MONITOR AND CONSOLE.

These are four statics in the library which are initially
unset but which are conventionally used for holding I/0
SCB pointers. ’

BCPL REFERENCE MANUAL Page 47
THE BCPL LIBRARY

INPUT ~ conventionally wused for current main Jdata
input stream, all the functlions with names
prefixed by IN described in section 6.3, assume
that the SCB pointed to by INPUT is the stream
on which their action is to apply.

ouTpPUT = conventionally wused for current main data
output stream, all the routines with names
prefixed by OUT described in section 6.4, assume
that the SCB pointed to by OQUTPUT is the stream
on which their action is to apply.

CONSOLE — conventionally used for current command or
control input stream.

MONITOR — conventlonally wused for current monitoring
stream for error messages, progress reports ani
tracing information.

6.2.8 ENDREAD, ENDWRITE AND CLOSE

All these routines take an SCB as their parameter and
invoke the <closing routine of the SCB. For FINDFILE,
CREATEFILE and UPDATEFILE the default action is to emptly
the buffers, release the monitor channel and give the SCB
and any buffer space back to the freespace system. For
FINDTTY the default actiom is to emply the teletype
buffer.

INPUT ROUTINES
6.3.1 STRUCTURE OF INPUT ROUTINES

For each input function there are three standard formats
available.

INroutine which is a function which returns a value read
from the stream INPUT (see 6.2.7)

RDrout ine which is a function which returns a value reacd
from the stream which is its first parameter

READroutine which is a routine which assigns a value, read
from the stream which is its first parameter
to the location which is its second parameter.

Example.

All the following have the same action

BCPL REFERENCE MANUAL Page 48
THE BCPL LIBRARY

CH 2= INCH()
CH 2= RDCHCINPUT)
READCH(INPUT, &CH)

6.3.2 INCH RDCH AND READCH

READCH is the basic input routine, all the other input
routines described in section 6.3 invoke READCH. READCH
invokes the read routine for the stream which is its first
parameter. The streams set up by FINDINPUT or FINDUPDATE
behave according to the “mode’ of the filet~

Modes ©-] return a 7 bit ascii character, ignoring line
numbers, returns /*#E’ end—of-stream character
at end of file. .

Modes 2~14 return a 36 bit (full word) byte, jumps to
error label at end of file.

Modes 15-17 READCH only =~ the second and subsequent
parameters are a command list, each element of
which is an 7IOWD/, the left half of which is
the negative of the word count, and in right
half of which is the address~] of the data
area for the transfer. If there are not
enough words left in the file to satisfy the
command list then a jump is made to the error
closure. The last word of the command list
must be zero.

The read routine in the TIY SCB returns 7 bit ascii
characters.

For example see 6.3.1

6.3.3 INNO RDNO AND READNO

Reads an (optionally signed) decimal number. All
characters up to + - or a digit are ignored. The number
is terminated by any non digit character, which will be
the next character read from the stream.

Example.
All the following have the same action.
NO = INNO()

NO 1= RDNO(INPUT)
READNO (INPUT, @NO)

BCPL REFERENCE MANUAL Page 49
THE BCPL LIBRARY

6.3.4 INF RDF AND READF

Reads an (optionally signed) real number.. All characters

up to + - or a digit are ignored. The number read should

conform to BCPL real number syntax. The character

following the number will be the next one read from the !
stream.

Example.
All the following have the same action.
F 2= INFO)

F 1= RDF(INPUT)
READF(INPUT,&F)

OUTPUT ROUTINES
6.4.1 STRUCTURE OF OUTPUT ROUTINES
Most of the output routines have two standard formats: -

OUTroutine which writes 1ts value(s) to the stream
OUTPUT (see 6.2.7)

WRITEroutine which expects as its first parameter a
stream to which 1t writes its value(s).

NEWLINE, NEWLINES, SPACE and SPACES write to the stream
OUTPUT.

Example.

Both the following have the same effect.

OUTCH(CH)
WRITECH(OUTPUT,CH)

6.4.2 OUTCH AND WRITECH

WRITECH is the basic output routine, all other output
routines described in section 6.4 invoke WRITECH. WRITECH
invokes the write routine for the stream which 1s its
first parameter. WRITECH 1is the direct counterpart of
READCH (see 6.3.2 for discussion of modes),

For example see 6.4.1

CPi. REFERENCE MANUAL Page 5@
HE BCPL LIBRARY

6.4.3 OUINO AND wWRITENO

Write a (possibly negative) decimal number in as few
character positions as are necessary.

Example.
Both the following have the same effect.

OUTNO(NO)
WRITENO(OUTPUT,NO)

6.4.4 OUTF AND WRITEF

Write a (possibly negative) real number in standard BCPL
real number syntax, 1f the decimal exponent lles in the
range -l to +6 then the exponent is suppressed.

Example.

Both the following have the same effect.

OUTE(F)
WRITEF (OUTPUT, F)

6.4.5 OUTS AND WRITES

Write a BCPL string.

Example.

Both the follwing have the same effect.

OUTS ("STRI NG™)
WRITES(OUTPUT,"STRING")

6.4.6 0OUTO, WRITEO, OUTOCT AND WRITEOCT

Arite the specified number of rightmost (least
significant) octal digits of the number. QUTO and OUTOCT
are synonymous, as are WRITEO and WRITEOCT.

Example.
Both the following have the same effect.

. OUTO (OCTVAL,PLACES)
WRITEO ¢(OUTPUT,0CTVAL,PLACES)

BCPL REFERENCE MANUAL Page »1
THE BCPL LIBRARY

6.4.7 OUIT AND WRITEI

Write the decimal number to the number of places

specified, padded on the left with spaces if necessary.
Example.
Both the following have the same effect.

OUTI(DECVAL,PLACES)
WRITEI(OUTPUT, DECVAL ,PLACES)

6.4.8 OUT AND WRITE
OUT(FORMAT, PI, P2 ... P26)
WRITE(STREAM, FORMAT, P1, P2 ... P26)
Write the parameters P! to P26 according to the format
list in the BCPL string FORMAT. The FORMAT string is
written out character by character until the escape
character ‘%’ is found. If the .character following the
7317 is one of the following then the next parameter 1is
written out by the appropriate routine.
H Use WRITECH to write the next parameter
‘N 4 WRITENO 1] Rl n 1] [H
k4 F t W R I TEF n 1] " " 1
4 5) w RI 'IES 1] n it n n
10n W WRITEO " " " " " to n places
3 I n i NRITE I " 1] f u n "o "t
12 write the character 7t/.
The action 1s undefined for other characters.
Example.
Both the following have the same effect.
OUT("xCxLsN ERROR:C DETECTED"“, EC, EC > | /54, 7 7)
WRITE(OUTPUT,

“xCx 3N ERROR:C DETECTED", EC, EC > } 757, 7 /)

6.4.9 NEWLINE, NEWLINES, SPACE AND SPACES

NENLINE() writes a newline.
NEWLINES(n) writes n new lines.
SPACE() writes a space.
SPACES(n) writes n spaces.

On the stream held in OQUIPUT.

CPL. REFERENCE MANUAL Page 52
HE BCPL LIBRARY

5

FREE STORAGE ROUTINES
6.5.1 PURPOSc

The free storage system Is used to maintain a vector which
is used by the I/0 system for SCB and buffer space. It
also provides a mechanism by which the wuser obtains
dynamically (and frees dynamically) vectors of arbitrary
size. In BCPL systems 3F and later, it 1is not strictly
necessary to call INITTALISEIO or FREESPACE when running
on a virtual memory system.

6.5.2 INITIALISEIO
INITIALISEIO(IOVECTOR, SIZE)

This routine is used to initialise the I1/0 system and must
be «ealled before any of INNO, RDNO, READNO, INF, RDF,
READF, FINDFILE, CREATEFILE and UPDATEFILE. The TOVECTOR
is passed to FREESPACE (see 6.9.3). Approximately 3b0
words of IOVECIOR space are used for normal input and
output streams set up by FINDFILE and CREATEFILE, and 659
words for update streams set up by UPDATEFILE.

6.5.3 FREESPACE
FREESPACE(VECTOR, SIZE)

Gives the vector to the free storage system to be
allocated by NEWEC (see 6.5.4). If input and output via
FINDFILE, CREATEFILE or UPDATEFILE 1is required then
INITIALISEIO should be ralled instead (see 6.5.2).

6.5.4 NEWVEC
NEAVEC(SIZE)

This function returns a vector of SIZE+1 -elements (i.e.
having subscripts ZERO to SIZE), from the free space
vector supplied to INITIALISEIO or FREESPACE. If NEWVEC
is called (either directly or indirectly from FINDFILE,
CREATEFILE or UPDATEFILE) before INITIALISEIO or FREESPACE
have been called —- then the message

?BCLNFS NEITHER INITIALISEIO NOR FREESPACE WAVE BEEN
CALLED

will be printed and the job terminated.

If NEWVEC is called and there is no space left in the free

BCPL REFERENCE MANUAL Page b3
THE BCPL LIBRARY

6.6

space vector then the message
?BCLFSE BCPL I~0 FREESPACE EXHAUSTED
will be printed and the job terminated.
Note: nawvec(w)i-1 = (na2,,(5252525))
6..5 FREEVEC AND FREE
FREEVEC(VECTOR)
FREEVEC and FREE are synonyms for the same routine, which

is wused to return a vector previously allocated by NEWVEC
back to the free storage system.

OTHER UTILITY ROUTINES

6.6.1 UNPACKSTRING

UNPACKSTRING (S, V)

This routine unpacks the BCPL string S into the vector

Ve
one character per word, V!0 will hold the length of the
string. It returns V as its result.

6.6.2 PACKSTRING
PACKSTRING(V, $)
Packs the n characters In V+1 to V+n into the vector 5 in

standard BCPL string format (see 2.7). VI!¥ contains the
value n. It returns the packed vector 5 as its resnlt.

6.6.3 LHS

This function returns the value TRUE only if the routine
that calls it, was itself invoked as a result of appearing
on the left hand side of an assignment statement (see
4.5). IHS otherwise returns the value FALSE. [(This
routine will not work if the LHS/ NUMBARGS suppress switch
to the compiler is used.]

BCPL REFERENCE MANUAL Page 54
THE BCPL LIBRARY

6.6.4 NUMBARGS

This function returns the number of actual parameters that
were passed to the routine that invoked NUMBARGS. It is
used to write routines which can have varying numbers of
parameters. (E.G. FINDFILE).

WARNING: The BCPL library relies on NUMBARGS for 1its
variable parameter routines such as PRINT, FINDFILE etc.
The NUMBARGS code should not be suppressed (via the
appropriate compiler switch) if the library is to be used.

6.6.5 LEVEL

This function returns the value of the current
environment, (stack level), which can be used with
LONGJUMP (see 6.6.0).

6.6.6 LONGJUMP
LONGJUMP (LEVEL, LABEL)

Jumps to the label LABEL, re-setting the environment to
that held in LEVEL (obtained from LEVEL function - see
6.6.5). The LEVEL and LONGJUMP routines used together
give a completely machine independent way of breaking out
of a set of nested routine invokations.

Example.

LET. R() BE

L(R
STATIC £(LL=03LB=0 £)
LET S(N) BE

£(5 TEST N = O THEN LONGJUMP(LL,LB) 7/ JUMPS OUT IN
//0NE ACTION TO LAB, RESETTING THE
//ENVIRONMENT (STACK) TO THAT OF R

OR S(N-1)

£)S

LL 3= LEVELQ) //RETURNS THE ENVIRONMENT (STACK)
//0F THE INVOKATION OF R

LB 1= [AB //USE A STATIC IN SCOPE OF S

S(44)

LAB:

£)R

BCPL REFERENCE MANUAL ‘Page 55
THE BCPL LIBRARY :

6.6.7 LABEL

LABEL(LAB)

This function returns an objeét consisting of the label
LAB and the current environment (stack level)$ the value

can be used with JUMP (see 6.6.8). Values returned from
LABEL are often referred to as CLOSURES.

6.6.8 JUMP
JUMP(CLOSURE)

Jumps to the label component CLOSURE, resetting the
environment to that indicated by CLOSURE (obtalined from
LABEL function - see 6.6.7), LABEL and JUMP can be used
as a way of breaking out of a set of nested routine
invokations. A LABEL closure 1is wused for the ERROR
parameter to the FINDFILE, CREATEFILE and UPDATEFILE
functions, so that when an error occurs a Jjump can be made
to a predefined point in the program, and the environment
re~set. :

Example.

This has the same effect as the example in 6.6.6.

LET R() BE
£(R
LET S(N,E) BE .
£(S TEST N=0 THEN JUMP(E) /7 JUMPS OUT IN ONE ACTION
. /7 TO LAB, RESETTING THE
// ENVIRONMENT TO THAT OF R

OR S(N-1, E)
£)S
5(40, LABEL(LAB)) //LABEL RETURNS THE ENVIRONMENT
//(STACK) OF THE INVOKATION OF
//R, WITH TdE VALUE OF LAB
LAB:
£)R
Example.

INPUT 2= FINDFILE("DSK", "INPUT", "SRC", v, LABEL(ERR))

.

EﬁRt ARITES(TTY ,**CxLCAN*x/T FIND INPUT.SRC")
FINISH

BCPL REFERENCE MANUAL
RUNNING A BCPL PROGRAM -

7.

7.1

Page 56 :

RUNNING A BCPL PROGRAM

COMPILER COMMAND FORMAT

The compiler is run by the command

.R BCPL

when the compiler is ready it responds with
*

The form of the command string is
*REFILESPEC,LISTFILESPEC=INPUTFILELIST
SSEFILESPEC=INPUTFILELIST
Q?NPUTFILELIST

= CAN BE REPLACED BY. _.

INPUTFILELIST
is optional GETFILESPECS followed by INPUTFILESPEC

Compiler switches (listed in Appendix E) can appear after
any file spec, in the form

/SWITCH:N (¢N is optional)
or
(SWITCH:N,SWIICH:IN ... SWITCH:N) (tN is optional)

Default INPUTFILESPEC is DSK:filename.BCL{user]
or DSKifilename.BCPluser)
Default RELFILESPEC is DSK:filename.REl.[user]
or DSK:filename. INT{user] (INTCODE)
or DSKsfilename.OUT[user]) (TREE)
Default LISTFI'LESPEC is DSKtfilename.LST[user]
Default GETFILESPEC is DSK:filename.GET[user]
or DSKe2filename.BCLIluser]

Any filename missing is defaulted to that of the input
file.

A relfile is aiways produced {(unless inhibited by the “G”
switch) and a listfile is not normally produced (unless
required by the “L7 or “C’ switch).

If the /D’ switch 1is enabled then a symbol file
DSKstrelfilename.SMBluser]l is produced for use by the
debugger.

If LISTFILESPEC appears then a list file 1s always
produced.

BCPL REFERENCE MANUAL Page 57
RUNNING A BCPL PROGRAM

7.2

COMPILER OUTPUT

The RELFILE normally produced by the -compiler 1is a
standard relocatable binary suitable for loading with LINK
loader. The compiler compiles TWOSEG code, but the “#p”
switch forces it to produce low code only. The TWOSEG
code is restartable and re-entrant, unless the “V/ switch
is used in which case it may not be restartable.

The LISTFILE normally produced 1lists the source line
number and the block nesting level in two columns on the
left side of the page and the source lines on the right.
Erroneous 1Ilines are listed even if listing 1s temporarily
suppressed (see 5.6). The line numbers are indented one
space for each nesting level.

INTCODE output is in ascii text form, described in section
8. -

The symbol file, if produced, contains BCPLDT debugging
information in ascii text form.

COMPILER ERROR MESSAGES

Error messages are of two levels, ERROR (E) level and
WARNING (W) levels, The latter beilng errors from which
the compiler thinks it can recover. The errors are two
kinds, Syntactic Errors and Semantic Errors. Syntax
errors are detected diring the first scan of the program;
the erroneous source line is listed on the error medium
with a pointer to the next symbol after the error. (If
the error 1s at the end of a line, the polnter may point
to the start of the next line). If the error has occurred
in a GETfile, this 1s indicated in the error message.

Semantic errors are detected during the second scan of the
programs} the part of the parse tree that is erroneous is
printed.

The final ERROR count is printed on the Teletype (LOG file
for batch users).

Error messages are normally put on the Teletype (L.OG file
for batch wusers), unless the compiler is running on a
BATCH job with LISTFILE present in which case the LISTFILE
is used as well. Error messages on the Teletype are
abbreviated. They are preceded by a code in brackets
consisting of a letter (E for ERROR, W for WARNING) and
the error message number (see Appendix G) followed by the
line no on which the error was detected. If the error was
in a getfile this is indicated by (Gigetfilename).

BCPL REFERENCE MANUAL Page 583
RUNNING A BCPL PROGRAM

7.4

PROGRAM SIZE -
7.4.1 NON VIRTUAL MEMORY SYSTEMS

The compiler has workspace to handle up to approximately
24W source lines. It is advisable to split files larger
than this into separate parts. If, however, you wish to
increase the workspace of the compliler, this can be done
with the 5S4 switch. An indication that the workspace |is
near full is when the % figure (printed by the compiler at
the end of the compilation) approaches |Wd%.

7.4.2 VIRTUAL MEMORY SYSTEMS

The compiler acquires workspace for compiling source
programs until 1t reaches the 1limit imposed by the
Monitor. It is, however still advisable to split large
files into separate parts, as this makes better use of the
separate compilation facility, and optimises use of
machine time during program development.

INTERACTIVE USE

The compiler is best run interactively by use of COMPIL
class commands, see 5.5 for description of input files.

.COMPILE
.LOAD
«EXECUTE
.DEBUG

which all recognise .BCL and .BCP extensions as requiring

the BCPL compiler, and generate the correct command string
for the compller. See the time-sharing manual for a

complete description of COMPIL and how to pass switches to
the compiler via COMPIL. Source errors detected by the
compiler are usually reported to the controlling teletype.

The postmortem, described below (see 7.7) can be obtained
at any point during the execution of the program by
“control-C"ing out of the program and then typing

.REENTER
This can also be performed upon completion of execution.

The program can be debugged either using DDT or BCPLDT.
The wuser 1is advised to loock at some BCPL generatad code
(use the /M switch) before attempting to use DDT. All the
statics in the program are put intg the symbol table for
the segment. [For a description of the generated code see
Appendix F.]

BCPL REFERENCE MANUAL Page 59
RUNNING A BCPL PROGRAM

7.6

7.7

BATCH USE

The following deck will list, compile and. execute a two
file BCPL program with a common GET file, and provi.Jde a
postmortem If the program failsst-—

£SEQUENCE nnnnn /7 get this from open shop
£J0OB name [projyproqg]l // program name and user no.
£DECK header .GET

. /7 “GETY" header file

LEOD
£BCPL name.BCL

-

. // first BCPL file

£EOD
£BCPL name.BCL

. // second BCPL file

£EOD
£DATA // must appear to

H // force execution

. // data (if any -

. // can be null)
£EOD]
%ERR2 // these cards ensure clean
%FINt // termination and postmortem
-REENTER // under all circumstances
end-of-file card // from open shop.

To get access to the data following the £DATA card use
INPUT: =F INDFILE("CDR"), see 6.2.2.

To create lineprinter output files use
OUTPUT $=CREATEFILE("LPT"), see 6.2.3.

Source errors are listed on the source 1listing file and
the Teletype.

THE POSTMORTEM

When BCPIDT has not been loaded the postmortem consists of
three partst—

The STACK BACKTRACK gives the hierarchical nesting of
routines, I.E. who called who called who etc. The last
routine entered is printed first.

The HISTORY gives the last 64 interesting events (routine
entries and exits, labels and trace point calls). Exits

3JCPL. REFERENCE MANUAL Page 64
YUNNING A BCPL PROGRAM

'.8

have 7/=7 after them labels have “3/ after them and trace
points are indicated by “%~.

The PROFILE gives the number of times each routine was
activated, each label passed and each trace point
activated.

The library routines do not feature in the POSTMORTEM.
The postmortem slows down program execution slightly. The
postmortem can be removed from working programs by
recompiling with the compiler switch /F/ set.

BCPLDT

BCPLDT is a purpose built BCPL debugger, 1t 1is designed
primarily for interactive debugging, but can also be used
under batch. Compiling programs with the “D’ compiler
switch set creates a symbol file which can be used by the
debugger.

Text and/or BCPLDI commands can be put into the symbol
file (if one 1is being created) by puting lines of the
forms

£SYMBOL "BCPL string"

into the source file. The strings are appended in the
order of occurrence to the normal BCPLDT symbol file.

The debugger is described fully in the BCPL USER GUIDE.

BCPL REFERENCE MANUAL
INTCODE

Page 61

8.8
8.1

INTCODE
THE PURPOSE OF INICODE

INTCODE was
machine language
structure, and as such,
uses are a) to allow
machines and b) permit transportability of
(especlially the BCPL compiler).

designed by Martin Richards as a
with a primitive underlying
suitable for interpretation.

BCPL

The INTCODE generator running at ESSEX is a
written by Vasiliki Kollias as part of an M.Sc.
and was incorporated into the standard
compiler by Dave Lyons and Pete Gardner.
slightly different INTCODE from the original Mar
Richards specification, and this section describes the

proje

INTCODE.
Vasiliki

This

section

Kollias”

M.S5c.

is

paraphrased

Thesis,

and

from
also

part
from

original description of INTCODE by Martin

Richards.

the features of the language are inplemented except
floating point operators, exponentiation, static
dynamic selectors and bytes, and the TRACE command.

INTCODE is obtained by using /P32 compiler switch,
compiler tells you the maximum local label used in
segment, so that the local label vector in your
can be adjusted accordingly.

THE INTCODE MACHINE

8.2.1 WORDS

The basic unit of information is the word. According

the specification of the language the word size

implementation dependent, but it should ideally contain
least 18 bits 1In order to hold all the fields of
instruction.

8.2.2 REGISTERS

There are 5 reygisters in the INTCODE machines

A & B* The Accumulator and Auxiliary accumulator.

Cs The Control register giving the location of

next Instruction to be executed.

D2 The address register used to hold the effect

address of an instruction.
Ps

A polnter used to address the local work area

simple
machine

Its

BCPL programs to be run on small
programs

version

ci,

running BCPL
It produces

tin
new

of
the
All
for
and

the
the

assembler

to
is
at
an

the

ive

and

CPL REFERENCE MANUAL Page 62
NTCODE
function arguments.
8.2.3 INSTRUCTION FORMAT
VF vV P A H
The instruction format comprises four fields: the
function part F (3 bits -~ wused to store one of the 3
machine instructions). The I bit (the Indirection bit)
which when set then the D register is replaced by the
contents of the location addressed by D. The P bit
specifies whether P 1is to be added into D. The A field
(remaining bits) stores the word address.
8.2.4 MACHINE INSTRUCTIONS
Opcode Mnemonic Meaning
%) L B t= Ay A t=D
1 S Location (D) 3= A
2 A A= A+ D
3 J C =D
4 T IF AN=2D0C 1=1D
5 F IF A =9 DO C =D
6 K P = P + Dt
Location (P), lLocation (P + 1) t= D, C3
C = A '
7 X See below

The X instructions (the A field indicates one of)?

X1 A 3= Location (A)

X2 A 3= =A

X3 A 3= \A

X4 This causes return from the current functions;
by convention the result 1Is left in the accumulator.
C t= Location (P + 1)3 P t= P - Location (P)

X5 A = B * A

X6 A= B/ A

X7 A = B REM A

X8 A 3= B + A

X9 A 3= B~ A

X149 A 2= B = A

X1 A t= B \= A

X12 A= B < A

Xi3 A = B >= A

Xi 4 A =B > A

X15 A 3= B <= A

Xi6 A 3= B << A

X17 A = B > A

BCPL REFERENCE MANUAL Page 63

INTCODE
X18 A 3= B /N A
X9 A 8= B \/ A
X2v A 3= B NEQV A
X2t A = B EQV A

X22 FINISH
X23 Switch on the value of A using data in the
locations addressed by C, C+! etc.
B, D t= Location (C), Location (C+1)
UNTIL B = @ DO -
£(B, Ct=8B -1, C+ 2
IF A = location (C) DO
£(D t= Location (C + 1)
BREAK
£)
£)
C =D
X24 This causes an escape from intcode into the
interpreter to perform the function
indicated by the value in the accumulator.

As well as these instructions specified in the original
INTCODE, ESSEX INTCODE defines the following:?

X26 Selector apply. The parameters to this function
are held in the 3 words following the instruction.
t= A + Location (C)
t= Location (A)
t= A >> (-~ Location (C + 1))
1= A /N Llocation (C + 2)
t= C + 3
X27 Selector store. The parameters to this function
are held in the 3 words following the instruction.
t= A + Location (C)
1= Location (A)
2= D /\ \Location (C + 2)
4= B << (- Location (C + 1))
t= B /\ Location (C + 2)
Location (A) t= B + D
C=C+ 3
X37 Byte apply. The parameters to this function
are held in the 2 words following the instruction.
A 1= A >> (-~ Location (C))
A 1= A /\ Location (C + 1)
Css=0C+2
X38 Byte store. The parameters to this function
are held in the 2 words following the instruction.
D 3= Location (A)
D 2= D /\ Location (C + 1)
B t= B << (~ Location (C))
B t= B /\ Location (C + 1)
Location (A) 3= D + B

OXr P>

TmOUT>

C = C+ 2
X39 A = B ROTL A
X40 A 3= B ROTR A
X41 A 3= B ALSHIFT A
Xa2 A $= B ARSHIFT A

BCPL REFERENMCE MANUAL Page 64

INTCODE
K43 A 3= B BITOR A
K44 A = B BITAND A
X45 A 3= ABS A
8.3 TdE INTCODE ASSEMBLY LANGUAGE

8.3.1 GENERAL LAYOUT

The assembly language for INICODE has been designed
primarily to be compact and simple to assemble, but some
care has also been taken so that it can be read and
modified with reasonable ease by the programmer. The text
of the assembly language consists of letters, digits,

spaces, newlines and the characters 2/s 2LS s SV and.
2 /7

s77 {5 used as a continuation symbels it is skipped and
the remaining characters of the line up to and including
the next newline are ignored. Its main purpose 1is to
simplify the use of card images as a medium for
transfering INTCODE programs. The maximum length of an
INTCODE line up to a 7/7 is 72 characters.

+4+ marks the entry polnt of a Tunction or ‘routine, and is
followed by the internal name of the routine. This can be
ignored unless the interpreter is to include run time
tracing facilities.

r4+ marks the end nf a routine or function and is matched
to ‘&7, It can be used if an assembler is attempting to
record the stack high water mark reached in a routine, it
should otherwise be ignored.

4.7 occurs in the names of routines and functions and in
the external names. 1t should be treated as an
alphanumeric character for this purpose.

#77 is used to imdicate the end of the segment. l.ocal
labels can be unset.

An example assembler/interpreter which runs on the PDP-1:3
can be seen in BCL3ASSINT.MAS.

8.3.2 INSTRUCIIONS

The assembly form of an instruction consists of the
mnemonic letter for the machine function, optionally
followed by “I17 if indirection 1i5 specified, optionally
followed by ~“Ps if the P modification is specified,
followed by the address which is either a decimal integer
or a label.

BCPL REFERENCE MANUAL Page 65
INTCODE

8.3.3 LABELS
There are 3 forms of labels, local, GLOBAL and £XTERNAL.

Local labels are referenced by 7L’ followed by a iecimal
integeri they refer to a label local to this segment.

GLOBAL labels are referenced by “G’ followed by a decimal
integer.

EXTERNAL labels are referenced by “E/ followed by a BCPL
string in string quotes /"~

A number not preceded by a letter 1is interpreted as a
local labels it should be set to the address of the next
location to be loaded.

GLOBAL labels are 1initialised during assembly when a
directive 1is found of the form /G’ followed by a GLOBAL
number (decimal integer) followed by “L”“ followed by a
local label number. This can be interpreted in one of two
ways. FElther a) The address of the location referred to
by the local label should now be known globally by the
GLOBAL number, referable to in other segmefits, or b) A
global vector, at some point in the work area (P), is
established and the GLOBAL number is interpreted as
pointing into this area. To set the GLOBAL, the value of
the location referred to by the local label is copied into
the GLOBAL location.

EXTERNAL labels are intlalised during assembly when a
directive is found of the form “E/ followed by an EXTERNAL
name (in quotes -~ “"“/) followed by /L’ followed by a local
label number. This should be handled similarly to GLOBAL
format a) above.

It is usually easlest, in the early stages of implementing
an assembler/interpreter to permit intersegment
communication via GLOBALs only, and to implement them via
format b) above.

8.3.4 DATA

Data may be assembled by a statement consisting of /)7
followed by a sijyned decimal integer for constant values,
or /DL’ followed by a local label number for pointers.

Characters may be packed and assembled wusing character
statements of the form “C’ followed by the integer value
of the character. On the PDP-1¥ the characters are ASCI]
codes and the first character 1is usually a character
count. The characters should be packed up in the manner
mast suitable for the interpreting machine.

3CPL. REFERENCE MANUAL Page 66
NICODE

/Y7 followed by an integer count indicates a static
vector, whose subscripts are from ¢ to the count. The
designated number of words should either be skipped o1 set
to zero.

Example program.

GLOBAL £(START:1 £)

EXTERNAL £(CREATEFILEs INITIALISEIO
WRITE: OUTIPUT £)

STATIC £(V = VEC 10 L)

STATIC £(OUTPUT = ¥ £)

LET START() BE
£{(LET IQV = VEC 659
LET FACT(N) = N =1 => 1, N &% FACT(N-1)
INITIALISEIO(IOV, 650)
QUTPUT = CREATEFILE(®TTY®)
FOR I=1 TO 18 DO WRITE(OUTPUT,
MEACT(EN) IS sNaCxL», T, FACT(I))
£)

Produces the following INTCODE.

JL6
£START 4 LP3 SP2 JL9
L£FACT 7 LIP2 L1 X1® FL1@ L1 JLI} 1@ LIp2 L1 X9 SpP5 LILB K/
3 LIP2 X5 11 X4
#

1 Ylw

2 DL 3 D& 5 DL4 8 DLV

Q9 LIP2 SP656 L65Y SP657 LIEWINITIALISEIO" K654 LL12 SP65
6 LIE"CREATEFILE" K654 SL3 L1 SP654 JLI13 14 LIL3 SP657 LL/
15 SP658 LIP6ba SP659 LIP654 SP662 LILR K668 Sp6cy LIE"WR/
ITE" K655 LIP654 Al SP654 13 L1¥ X15 TL14 X4
-

12 C3 C84 CB4 CBY 15 CI16 CT@® C65 C6T CB4 C4p €58 C78 C41/
C32 C73 C83 C32 €58 C78 C13 Cid

6 X22

EBQUTPUTHL3
GILS

PROGRAM 13z
<segment> 1=
<rblock> 11=
<block> 1=
<D> 13=
<ebody> 13=
<ebody2> ti=
<edef> =
<mgbody> 3=
<mgdef> 18
<sbody> t1=
<sdef> ti=

<declaration>zi=

<C>

<Ci> 1=
<C2> 1=
<C3> 1=

= <Cl> | <C2»

APPENDIX A
FULL SYNTAX OF BCPL

<segment>*

<rblock>

<plock> | <compound>

<D> <3<D>*x <3 <C>>%

LET <declaration> <AND <declaration»>>* |
EXTERNAL <ebody> i i
MANIFEST <mgbody> !
GLOBAL <mgbody>
STATIC <sbody>
<E><ebody2> |<ebody2>

L(<edef> <3 <edef>>x L)

<name> . <name> = <E> | <name> * <E>
£(<mgdef> <ij<mgdef>>* L)

]
H
'
'

;

|
<name><K> | <name> = <K> | <name> 1 <K> f
£(<sdef> <} <sdef>>* £) i
<name> <[> | <name> = <L> | <name> % <[> {
<name> (<namelist>**) < = <E> | BE <C>> |

<name> = <VE> |
<namelist> = <VE list>

[F <E> DO <C> !

WHILE <E> DO <C> |

UNLESS <E> DO <C>

UNTIL <E> DO <C> |

TEST <E> THEN <C> OR <C> |

SWITCHON <E> INTO <C> |

FOR <name>=<E> TO <BE> <BY <K>>*%x DO <C> |
<pame> t <C> |

CASE <K> <... <K>>#%*2 <(C> |
DEFAULT <<K»> ... <K>>*%x1 <(C>
<C3> | :
<C2> <> <Cli> |

<C2> <> <C3>

<C2> REPEAT !

<C2> REPEATWHILE <E»>

<C2> REPEATWHILE <E> |

<C2> WHERE <declaration>
<AND <declaration>>*

GOTO <E> |

RESULTIS <E> |

BREAK |

[LOOP ¢

e
e

<binop>

<namelist>
<VElist>
<l.list>
<l>

<K>

<VE>

<E>
<Sexpr>

<Cexpr>

<logicall>
<opl>

<logical2>
<logical 3>

<relational>

<op2>

<op7>
<op8>
<shift>
<op3>

<arithli>
<op4>
<arith2>
<appl>
<op6>
<appi2>
<appl3>
<unary>
<op7>

<primary>

<constant>

<real>
<fraction>
<exponent>
<integer>

FULL SYNTAX OF BCPL

3=
$i=
3=
$ 1=
1=
1=
=
3=

3=
$i=
Iz
1=

ti=

1i=
iz
1=
3z

3=
1=
i
[£
1=
13=
Iz

iz

f1=

it=

1t=
it=
13=
i1=

= LS .

RETURN
FINISH
ENDCASE
£L(<rblock
<E>() |
<F>(<Elist
<kBlist> 33
<Elist> <b
T RACE
TRACE
<opl> 1 <o
<oph> 1 <o
<name> <,
<E> <, <E>
<L> <, <L>
<VE>
<E>
VEC <K>
<Sexpr>
<Cexpr> 1
BYTE <E> @
<logicall>
<logicall>
<logical2>
EQV 1 NEQV
<loglical3>
relational
<logical3>
<shift> <<
LE |
VHGE
\/ | BITOR
/N | BITAN
carith> |
LSHIFT i
ALSHIFT |
carith2> |
+ o= 0 #+
<appl> i<
<appl 2> |
1 &&
<appl 3> |
<unary> .
<primary>
NOT 1+ @ .
#ABS | FIX
<name> i <
<primary>(
NIL + VALO
<real> 1 <
<truthvalu
Lconstantl
<fraction>
<integer>.
E< + ¢ ->%
<d><d>*

i

#EQ

Page A-2

> £)

>) 0
= <klist> |
inop>3= <Elist> 1

<name>() .
<name>(<Elist>)

<op4>
<op8> i !

p2> 1 <op3> |
p6>i <opT> |
<name>>%*

>*k

>k

<E>

TABLE <Llist>

SELECTOR <E> @
<E>

-> <Sexpr>, <Sexpr>

i <logicall> <opl> <logical2>

<E> t <E> |

1

t <logical2> <op7> <logical3>

> .
<opB> <relationall>

op2> <shift>>*

EQ ' GE 1+ GR
#GR | #NE

NE

D
<shift> <op3> <arith>
RSHIFT | ROTL | ROTR !
ARSHIFT
<arith> <op4> <arith2>
H B
arith2>

<opb> <appl>
<appl2> I

<opbH> <appli>
appl2> 1 <appl!3>
%<name> <unary>
<unary>
P+ L = 1 ABS
i FLOAT
constant> (<E>)
) } <primary>(<Elist>) .
F <C>
integer> | <octal> .
e> | <string> ! <charconst>
i <literal>
<exponent> *%
<integer>
* <integer>

#+) -

FULL SYNTAX OF BCPL Page A-3
<octal> 11= <odr<od>*
<truthvalue> $t= TRUE | FALSE
<charconst> 11t= Z2<c>k’
<string> 11z Mo >R
<literal> ti= fconstant2
<d> ti= <od> 1+ B 19
<od> LR T R -
<name> stm < ><<]l> |, 1 <d>>*
<l> 3= a4 LB e v Z 0 atbtolee o2z
<c> t3= any BCPL character - see Appendix C.
Notes.

The syntax is expressed 1in near BNF. The symbol /%7

following a non terminal symbol (i.e. on in <> pairs),
indicates indefinate repetition (i.e. from zero to
infinity). Similarly, the symbol “%%* following a non
terminal symbol indicates optional occurrence (i.e. zero
or one occurrencel.

The syntax expressed at the start of the other sections of
this manual is not necessarily the actual syntax
recognised by the compiler. It is merely Intended to give
a reminder or flavour of the syntactic constructs beiny
described in that section.

f
i
{
|
|
|
i
i
i

Reserved
word

ALSHIFT
AND
ARSHIFT
BE
BITAND
BITOR
BREAK
BY

BYTE
CASE
DEFAULT
DO
ENDCASE
EQ

EQv
EXTERNAL
FALSE
FINISH
FIX
FLOAT
FOR
FROM

GE

GET
GLOBAL
GOTO

GR

[LOGAND
LOGOR
Loop
#ABS
#EQ
#GE
#GR

RESERVED WORDS AND SYMBLOLS

Equivalent
symbol

IS

THEN

&&
>z

APPENDIX B

REPEATUNTI L
REPEATWHILE

Equivalent
symbol

<
<<
"

DO

N/ LOGOR

N\ NOT

. NOT
FROM

ESERVED WORDS AND SYMBLOLS

LE #<= ~
LS #< 11
NE #\= -
= #EQ =
= #GE <<
> #GR >>
<= #LE <>
< #1.5 33
= #NE £(
I {
[£)
- }
v/ (
: EQ [
= GE)
. GR 1
= LE £10
: LS £]
A= NE 4
. n
. :
¢ v

4 H
k& !
\- & LOGAND e
1SN /\ LOGAND %
\ i LOGOR e

7/ introduces a comment up to the end of line
/% introduces a comment up to a matching */

Page B-2

1t OF
~ OF
3=

LSHIFT
RSHIFT
i

Y.any stringf

Lv

//? introduces a “user debugging” comment (see 5.7).

APPENDIX C
CHARACTER CODES.

Characters are in general represented by themselves in a
character or string constant. The exceptions are *, line
ending characters, and 4 (for a character constant) and #

(for a string constant). Layout characters (tab, space
etc. except for newline and newpage) may be represented
by themselves, but are usually represented by one of the
escape forms listed below.

The following are the most common escape forms:—

ok stands for *

*’ " [.

+* it 1t a9 it

*C " " Carriage return

*L “ " Line feed

*T " " Tab

*S & " Space

*P u " Form feed (newpage)
*E " " End of stream (flle)

In order to help when a string spreads over one line, *
followed by spaces, tabs or newlines up to a matching * is
ignored.

Examples.
"A NEWLINE IS USUALLY REPRESENTED BY *CxL"

"HEx %[[0" is equivalent to
HHELLOM.

Below 1is a table showing how to represent all the
characters in the PDP—14 character set.

Top line is the ASCII (PDP-18) character.

Bottom line is the BCPL character (string) representation.

Strings are limited to a maximum 127 characters.

~
"

HARACTER CODES.

X=

“\
N\

¢
.
'
'

*E

*E

EofileiEscape

]
¥
t
‘.

3¢ 3%

*S

Space

'
+
¢
.

NN b~ ~
. Lol e}
i
1
i “" nun
1
"“44
{

+ 4+ 1 Mmm
i
1
*ﬁ_ZZ
i
\.I\I“IIII
i
-~ | &9
i
{
-aa] wmae
= x
N he)
5 <

L

cO

co

< <

x

o 4

bad

*

x
<

x
W

b3
O

APPENDIX D

MACHINE CODE BLOCKS AND OPERATORS

Syntaxi-
£ [<macinstr> < 3 <macinstr>>* £]
<macinstr> 1i= <label> : <instfield> ! <instfield>
<instfield>33= <opcode> !
<opcpde> <addrpart> |
<opcode> <accpart>, <addrpart> !
LEXP <addrpart> !
£XWD <lhvalue>, <addrpart> !
£(<block> £)
<opcode> t1= K>
<accpart> 1= <>
<lhvalue> 1t= <K>
<addrpart> f:= @ <indpart> | <indpart>
<indpart> 3= ! <litpart> ! <litpart>
<litpart> 1= <addr> ! <addr> (<modpart>)
<addr> $1= <K> | <name> | <string> | <literal>
<modpart> ti= <K> T

Opcode is expected to be a constant either in the range o
to #7777, 1In which case it is put into bits 27 to 35,
otherwise it is expected to be a full word value. To this
end the standard opcodes in the range #4Y to #6677 are
provided in the form fopcode, evaluating to a ¥ bit value.
Extended opcodes for all of the CalLl and TTCALL uUOs,
JRST and JFCL evaluate to a full word value.

Examples.
£MOVE evaluates to #2uv
£JRST evaluates to #254

LJRSTF evaluates to . #254100J00000
£SKPINC evaluates to #0U51%4J500000
£MSTIME evaluates to #941000000023

@ <indpart> sets the indirect bit.

' <litpart> causes <litpart> to he put in the literal
table and the pointer substituted for <addrs, <litpart>
should be a compile time constant in this case.

The instruction word is constructed as follows.

ACHINE CODE BLOCKS AND OPERATORS

The <addr> part is put into
(BYTE 181:18) is zeroed.

A 9 bit <opcode> is put into the (BYIE 9:27) field,

word <opcode> ls added into

Page D=2

the (BYTE 18:u0) field,

a full
the instruction word.

The <accpart> .is ORed into the (BYTE 4:23) field,
The indirect bit is ORed into the (BYTE [322) field.

The <modpart> has its left and right halves swapped

and is

ORed into the instruction word.

Finally = if <addr> was <name> the

correct address, and

modifier are put into the instruction word.

The £EXP and £XWD forms are

Labels Iin a machine code segment are manifest

used for setting dats words.

labels (le

they do not create a data item like normal BCPL labels).

A GET file (BCLtACS.GET)
mnemonics for wuse

has all the
in machine code blocks.

register assignment

See the BCPL

USER GUIDE for a description of BCL$*ACS.GET.

Commas between fields in machine code statements are
treated as spaces, hencei-

£POPJ Py
and LPOPJ P
are the same, and probably not the instruction intended by
the programmer, who should writes-

£POPJ P4
Example.

GET "BCLtACS" 7/

LET ALPHA(L) = VALOF 7/
il £SETZ AC, O 4
£MOVE B, L /7
£CAIG B, “Z7 /7
LCAIGE B, “n” //
£(RETURN &) /7
£SETO AC, O ’/

£] /7

GET REGISTER ASSIGNMENTS
SETS UP ENTRY AND POSTMORTEM
FALSE INTO RESULT REG

LOAD PARAMETER

SKIP IF GREATER THAN Z

SKIP IF GR/EQ TO A

NOT ALPHA, RETURN FALSE

TRUE INTO RESULT REG

RETURN TRUE

APPENDIX E
COMPILER SWITCHES

Can be listed with /H compiler switch.

Valid switches are:-

/A
/B

/C
/D
/E
/Ezn

/F
/G
/H
/din
/1

/7J
/K
/Kin
/L

M
/N
/0

/P
/Pin

/Q
/R

/S
/5tn
/T
/70
/v
/N

Allocate undefined -names as /EXTERNAL-.

Batch mode compilation forced if job run
interactively, messages are listed on listing
file if listing on or TTY if listing off.

Cross reference listing.

Debugger symbol tables required.

Error abort. Abort on single error.

Error abort if more than n errors. If n = 0 (Default
case) then aborts on 30 errors for interactive run,
2¥d for batch run.

Fast code, contains no postmortem code.
Generation of code suppressed.

Help text printed on TTY.

Helpfull BCPL news printed on TTY.

Interactive mode compilation forced if job run as
batch, messages are listed on TTY.

Just syntax check.

Keywords in lower and upper case.

Keywords in lower case if n > 4.

List all source program regardless of any
£NJLISTs found.

Machine code listed on message medium.

No real GETfiles, ignore all GET commands.
Optimise trace code, no postmortem

or stackcheck code.

Pure/Impure code selector (Pure default).
Alternative code generator selector.

2=INTCODE, 3=Parse tree.

Include GETfile declarations in cross reference
listing.

Reset all switches to zero or false (default
condition).

Size of workspace increased by 1K.

S5ize of workspace set to nK, default is 3K.
Tree from parser listed on message medium.

User debugging code enabled.

Non reinitialised data.

Warning messages suppressed.

COMPILER SWITCHES Page E-2

/X Processor type. Y=default. I=KAlId. 2=KI1¥.
/Y Yank out NUMBARGS/LHS code.
/Z Generate library type rel file.

n is read as octal unless preceded by
+ or — in which case it is read as decimal.

Switches start at zero or false, and values are retained
until reset or compiler is reloaded.

Repeated occurrences of a switch without a value
increments the previous value by |. For this purpose non
zero switches are interpreted as true.

APPENDIX F
CODE CONVENTIONS

Register Allocationt

1%} ~ JRST to a special routine to catch Jjump to zero.

! - result register, results from VALOF and function
calls.

2 to 12 - working registers.

I3 - stack shadow register.

14 - link register.)

15 - the constant 1.

16 - stack register.

17 - system pushdown list

Registers | to 12 can be assumed free for programmer use
in any subroutine or machine code block.

All other registers may be used in a subroutine, but
B,15,16 and 17 should be reset before returning control to
BCPL code. Register 13 is only used if stackchecking is
enabled.

The subroutine entry code is
ADDI 16,80(14)
MOVEM 14,0(16)
This is followed by (if postmortem enabled)t

MOVED 13,n(18) where n is extent of stack used.
JSP 14,.TE
XD Pointer to profile count,,

Pointer to BCPL name of routine.

or the following if only stack check enabled
MOVEL 13,n(16)
CAMLE 13,.SL
Jsp 14,.50

IThe subroutine exit code (if postmortem enabled)s
Jsp 14,.1X

otherwise it is
JRSTF @0(16)

:0UE CONVENTIONS Page F-2

Subroutine call when NUMBARGS/LHS code is enabled 1is
JSpP 14,subroutine
SUBI 16,@word
MOVEI 13,n(16) if stackcheck or postmortem enabled.
twhere word is of the form
(BYTE 1:35) set if LHS true
(BYTE 12323) count of NUMBARGS
(BYTE -:18) zero
(BYTE 18:®) stack increment]

otherwise it is
Jsp 14, subroutine
SUBI 16, stack increment
MOVEI 13,n(16) if stackcheck or pos tmortem enabled.

A source error causes the following code to be planted
JSsp 14,.ER
XWD Lineno, Pointer to BCPL file name.
X WD Errno, Pointer to BCPL error message.

A label trap, planted if postmortem enabled is
Jsp 14,.TL
XWD Pointer to profile count,,
Pointer to BCPL name of label.

A TRACE point trap, planted if postmortem enabled 1is
Move parameters to stack
JSsp 14,.TT
SUB! (see subroutine call)
MOVEI 13,n(16)
CAIA Pointer to BCPL name of trace point.
CAl Pointer to profile count.

The finish code is
JSP 14,.FN

If a debugging symbol file is being produced the
segment is headed by
JSP 14,.5Y
XwD Pointer to name of symbol file,,
Continuation address.

APPENDIX G
COMPILATION ERROR MESSAGES.

Syntax error messagess—

T

UNMATCHED “£)4 TAG

There is a tagged closing section bracket whose tag name
does not match any tag name on the unclosed opening
sectlon brackets in your segment. The top level 1is
closed.

UNMATCHED “£(4 TAG

The compiler has encountered a closing section bracket
which has no tag name, but appears to close an opening
section which has a tag name. The top level is closed.

/BYTE” OR “SELECTOR”Z OUT OF PLACE

The BYTE and SFLECTOR construction operators must be
either an expression on their own, or within brackets,
because they have such low priority.

COMMAND EXPECTED
The compiler has elther a) found a declaration while
scanning commands, in which case it will process the

declaration, giving the names within it the scope of the.

remainder of the current block or b) found something
incomprehensible while scanning commands.

UNBRACKETED #TABLE/ IN EXPRESSION LIST

)7 EXPECIED AFTER EXPRESSION LIST
In a function or routine call.

EXPRESSION MALFORMED
The compiler, when reading what it believes to be an
expression (or sub expression), cannot understand the

_start of the expression (or sub expression).

73/ MISSING
One of the fields 1is missing in a SELECTOR or BYTE
construction, it is assumed to be zero.

4.7 MISSING IN CONDITIONAL
After the true branch.

COMPILATION ERROR MESSAGES. Page G-2

1 8.
19.

20.

2t.

22.

23.

24.

25.

UNMATCHED “(# IN EXPRESSION
The closing bracket on a sub expression appears to be
missing.

#LET” EXPECTED -
An “AND” has been found without preceding “‘LET’, it 1is
treated as “LET”.

2£(+ MISSING
Before EXTERNAL, STATIC, MANIFEST or GLOBAL list.

2)+ MISSING AFTER NAMELIST
The closing bracket is missing in the () or (<namelist>)
in a function or routine declaration.

+=+ QR “BE“ MISSING
After function or routine header.

7=+ MISSING
In what appears to be a simple LET declaration, the = has
peen left out or t= used instead.

DECLARATION EXPECTED
LET or WHERE have been found without a normal LET type
declaration following.

NAME EXPECTED

The compiler expects to find a name as part of a
declaration 1list. Caused usually by missing the closing
section bracket on an EXTERNAL, STATIC, MANIFEST or
GLOBAL, or using a reserved word where a name is intended.

7OR” MISSING AFTER “TEST”

s=¢ MISSING IN “FOR“
After the FOR loop control variable.

7TO+ MISSING IN ‘rOR“

7INTD’ MISSING AFTER /SWITCHON”

23+ MISSING AFTER “CASE’ OR “DEFAULT~

RANGE BADLY FORMED AFTER /DEFAULT”

The range after DEFAULT should have both lower and upper
values.

NAME EXPECTED AS LABEL

The compiler has found what it believes to be a label,
indicated by “3/, but the expression is not simply a name.

* ASSIGN OPERATOR MISSING

The compiler thinks it has seen an expression list on the
left hand side of an assignment. This error message
sometimes 15 caused by misspelling a keyword.

COMPILATION ERROR MESSAGES. - Page G-3

26.

27.

28.

29.

30.

31,

32.

33.

34.

35.

36.

37.

38.

39.

END OF PROGAM FOUND
Before the end of the file$ this is usally caused by a
mismatch of £(and £) pairs. :

STRING MISSING AF[ER “GET~”
There should be a BCPL string after GET, indicating which
file the compiler is to GET.

7#7 OUT OF CONTEXT

1s used to indicate an octal number, or to indicate
floating point interpretation of operators. It must be
ad jacent to the number or operator it qualifies.

STRING TOO LONG OR " OR 4 MISSING

A string exceeds the maximum permitted length. This is
usually caused by using " or 7 or * in a string instead of
*% or %/ or k.,

OCTAL DIGIT EXPECTED
In octal constant.

CHARACTER FOUND OUT OF PLACE
A character-which is meaningless to BCPL has been found in
the input file. 1t is ignored.

%N’ INTERPRETED AS ~“*C*L“
Some BCPL compilers on machines with a single new line

character, accept *N for newline. The compiler converts
this to *C*[.

FRACTION MISSING
A fractional part must always appear in a real number
constant.

EXPONENT MISSIHG
If E is given it must be followed by a valid exponent in a
real number constant.

END OF FILE FOUND
Before logical end of program$ this is usually caused by
a mismatch of L(and £) pairs.

UNABLE TO GET GETFILE
There is either a) some error in the file specification
for the getfile requested or b) the file is inaccessible.

END OF LINE FOUND WHILE READING STRING

A string 1s not permitted to span more than one line
unless specifically indicated. Often caused by using " or
/or * in a string instead of *% or %/ or *%,

TRACE ROUTINE CALL EXPECTED
The syntax of the [RACE command has been infringed.

MONADIC OPERAIORS ARE MORE BINDING THAM VECTOR APPLY
This warning is intended to advise that an expression of

i
i

-

COMPILATION ERROR MESSAGES. Page G-4

the form @A!B is interpreted as (@A) !B and not @(A!B)
Semantic error messagess’-
46. ’BREAKZ NOT INSIDE A .OOP
BREAK can only be used inside a loop command such as
UNTIL, WHILE and the REPEATs.

41. “L00OP/ NOI INSIDE A LOOP
Same as 40.

42. ENDCASE“ NOT INSIDE A “SWITCHON”
43, <RESULTIS’ NOT INSIDE A /VALOF‘
44. “CASE/ NOT INSIDE A “SWITCHON’
45. /DEFAULTZ NOT INSIDE A ~SWITCHON’

59, NAME NOT DECLARED
Name is treated as EXTERNAL. Repetitions of this

FOR,

error

for the same name can be stuppressed by use of the /A

switch.

51. MULTIPLY DECLARED NAME
A name may be declared by using it as a routine name,
label or as a FOR loop variables all names
identically the same scope must be unigue.

52. DYNAMIC FREE VARIABLE
Local variables declared by simple or vector

or a
with

LET

declarations, may only be referenced in the rowtine iIn
which they are declared, not even in any routines embedded

in the declaring one.

53, NON ’MANIFESTZ NAME IN CONSTANT
Any names appearing in a constant expression must

have

peen previously declared as MANIFEST. This message may

occur if the name is undeclared altogether.

54. LOCAL OR “MANIFESTZ NAME USED WITH @ IN LOAD TIME CONSTANT

The address of a local or MANIFEST can not be used in
constant expression for a SIATIC or TABLE element.

5%, ADDRESS OF sMANIFESTZ CONSTANT USED

the

Since a MANIFEST is merely a way of attaching a mnemonic
name to a constant, the address of such a constant Is

meaningless.

56. VALUE ASSIGNED TO “MANIFEST/ CONSTANT
See 55. Such an assignment 1s meaningless.

57. <GLOBAL’ OUT OF RANGE
must be in range -999Y to +9999,

64. “CASE’ VALUES OVERLAP

COMPILATION ERROR MESSAGES. Page G-5

61.

10.

T1.

72.

73.

T4.

715.

76.

Two CASE values are the same or overlap in a single
SWITCHON command body.

MORE I'HAN ONE /DEFAULT”
In a single SWITCHON command body:

UNMATCHED LHS/RHS .

In a LET declaration or an assignment there are too many
or too few values on the right of the declaration or
assignment for the number of locations named on the left.

ADDRESS EXPECTED
The expression (either operand of @ or on the left of an
assignment) is expected to indicate an address.

LOAD TIME CONSTANT EXPECTED '
The expression which is the value of a. STATIC or TABLE
element must be a lnad time constant.

NAME EXPECTED IN @ EXPRESSION

The name of a static (inplicit or explicit) 1is +the only
expression permissible as the operand of @ in a load time
constant.

CONSTANT EXPECTED
The expression must be a compile time constant.

STRING OR NAME EXPECTED AS EXTERNAL NAME
The equivalent name of an EXTERNAL (that on the right of =
or 3) must be a BCPL name or a BCPL string.

STRING OR NAME EXPECTED AS “EXTERNALZ PREFIX
The prefix to an EXTERNAL list should be a BCPL name or a
BCPL string.

INICODE version error messagesi-

85.

86.

87.
88.
89.

STATIC SELECTORS/BYTES ARE NOT IMPLEMENTED IN [HIS VERSION

DYNAMIC SELECTORS/BYTES ARE NOT IMPLEMENTED 1IN THIS
VERSION

EXPONENTIATION 1S NOT IMPLEMENTED IN THIS VERSION
[RACE IS NOT IMPLEMENTED IN TWIS VERSION

FLOATING POINT OPERATORS ARE NOT IWMPLEMENTED IN THIS
VERSION

General error messagest—

96.

97.

LINE TOU LONG
Source lines are limited to 150 characters. The rest of
the line 1s ignored.

OMPILATION ERROR MESSAGES. Page G-6

These errors are machine dependent and the text describes
the error.

COMPILER ERROR - PLEASE REPORT [0 SOFTWARE STAFF

Retain all the documentation/cards/listings you have of
your program. Make a note of the time and date of the
compilation run and take all that information to your
software representative.

COMPILER WORKSPACE FULL, RECOMPILE WITdA MORE SPACE

The compiler utilises a limited workspace. If you should
get this message either a) split the segment into two or
more pleces (better solution) or b) increase the compilers
workspace via the compiler switches. While developing a
program, indication that this error is impending will be
apparent if the % figure printed by the compiler after
each compilation approaches 130%.

APPENDIX H

STREAM CONTROL BLOCKS.

The format of the SCB is described in terms of SELECTORS
in the file BCLtSCB.GET, and users should consult this for
the current allocation of the fields in the SCB.

Words © to 18 (Octal) are the same for all SCB’s. They are

SC.FLAGS Word
SC.READER Word
SC.WRITER Word
SC.CLOSER Word
SC.ERROR Word
SC.OLDREAD MWord
SC.PUTSTACK word
SC.USERS Word
SC.USER7 Word
SC.USERI® Word

— U A=

14

)
1
H
:
t
1
]
1
1
1

flag word

read routine for this stream

write routine for this stream

close routine for this stream

error "LABEL" closure for this stream

putback word
M]

reserved for user
Jat L] 1
" 11} n

The flag word (word @) has the following bit allocations.
SC.MONITORSTREAM (BYTE 1:35) set for Monitor SCB

(BYTE 6t12) size of SCB.

(BYTE 130) always set in SCB.

SC.SIZE
SC.sCB

APPENDIX I
EXAMPLE BCPL PROGRAM

GET “BCL:BCPLIB™

/% THIS PROGRAM CREATES A LINEPRINTER FILE WHICH SHOWS
NHICH CHARACTERS IN THE SOURCE FILE (DSK:DEMO.BCL)
ARE IN UPPER CASE. IT DOES THIS BY OVERPRINTING ALL

UPPER CASE CHARACTERS.

*x/ - .

MANIFEST £ (JOSIZE=65@; LINESIZE=150 £)
STATIC £(V = VEC LINESIZE £)

LET START() BE

L£(MAIN
LET IOV = VEC I0OSIZE
AND C, OVERPRINT, VvC = NIL, NIL, NIL
INITIALISEIO(IOV, IOSIZE)
INPUT 1= FINDFILE("DSK","DEMO","BCLY)
OUIPUT t= CREATEFILE("LPT")

C 3= INCH(O)

£(A
OVERPRINT, VC = FALSE, ¢
UNTIL LINECH(C) \/ C = *%EZ/ DO
£(B // READS AN INPUT LINE INIO V
VC +:3:= |
VIVC 3= C
C 3= [NCH()
£)B
PRINTLINE(VC)
FOR 1 = 1 TO VC DO // REMOVE WON INTERESTING CHARS
SWITCAON VI!I INTO
£(C
CASE A7 ... “Z7% OVERPRINT := TRUE
CASE 7#+*T/3 ENDCASE
DEFAULT @ .4, #1778 VI] 8= 257
£)C
IF OVERPRINT DO
FOR I=1 TO 2 DO OUTCH(’*C*)<>PRINTLINE(VC)
IF C = ##*E4 BREAK
£(OUTCH(C)$ Ce=INCH() £) REPEATWHILE LINECH(C)

IXAMPLE BCPL PROGRAM

£)YA REPEAT

CLOSECINPUT)

CLOSE(OUTPUT)
LIMAIN

AND PRINTLINE(CT) BE
FOR I = | TO CT DO OUTCH(V!II)

AND LINECH(CH) = /*L” LE cH LE 7*C’

Page

