A+B)%n = (A%n +B%n)% n

(A-B)% n = (A%n-B%n)%n

(AxB)%n = (A%n xB%n)%n

Multiplication table modulo 7

0 1 2 3 4 5 o
ofofojo)j0o)OfOfO
1{of1]2]|3)4(|5]6
210124613 ]|5
310|3|6|2(|5]1]4
410(4)11|5|12|6]3
510[5|3(1|6]4]2
6|0[6]5]14]13[2]1

Modular Arithmetic

Can see that 2x4=1, 3x5=1, 4x2=1 5x3=1, 6x6=1,

Which means that multiplying by 4 is the same as dividing by 2,
multiplying by 5 is the same as dividing by 3, etc.

3 is the “modular inverse” of 5, modulo 7

4 is the “modular inverse” of 2, modulo 7

So modulo 7, division can be done meaningfully.

This always works out when the modulus is prime.

Multiplication table modulo 6

01 2 3 4 5
0f0j0)J0]0|O]O
110(1]2(3|4]|5
210(2(4(0]2]|4
3/0(3|0|3]0]3
410(4)2(0]4]2
5101514 |13[2]1

Can see that nothingx4=1,

Which means that division modulo 6 can not be done.



To The Power Of

Think of a binary number: 1001101. This is 77.
It tellsus the 77 =64 + 8 + 4 + 1.
And makes it easy to work out anything to the power of 77.

A77 = Ab6448+441
= A64 x A8 x A% x Al
= Al x A% x A8 x A64
= A x (A2)2 x ((A2)?)2 x (((((A%)2)2)?)2)2

Run a loop, looking at each digit of the exponent in turn, also squaring that value of A
each time round. For any 1 in the binary for the exponent, multiply the answer so far
by the A so far.

int power(int A, int B)
{ int answer=1;
while (B>0)
{ if (B & 1)
answer*=A;
A*=A;
B>>=1; 1}
return answer; }

A large number to the power of a large number is a really huge number, and would be
very difficult to compute. But if it is all done modulo N, the answer and all
intermediate results will be less than N.

(12631823571532) % 1000000 can be computed very quickly and easily, and only
has six digits.



Euclid’s Algorithm for finding the Greatest Common Divisor has been known for thousands of years:

int gcd(int a, int b)
{ while (b!=0)
{ int t=a%b;
a=b;
b=t; }
return a; }

A simple improvement to it provides the Extended GCD algorithm, which not only returns the GCD of
two numbers, but also finds two other important values:

int extgcd{int a, int b, int & m, int & n)
{ int ml, nl, g;

if (b==0)

{ g=a; m=1; n=0;

return g; }

g=extgcd(b, a%b, ml, nl);

int quo=a/b;

m=nl;

n=ml-gquo*nl;

return g; }

Although the presence of the loop in gcd and the recursion in extgcd make it seem otherwise, these
two functions are surprisingly fast. No known general-purpose algorithms does the job significantly faster.

If extgcd(A, B, X, Y) = G, then G = X*A + Y*B, and G is also the GCD of A and B.
Because modinv (A, N) only exists if GCD (A, N) ==1, we know that if extgcd (A, N, X,Y)=1 then
modinv (A,N) existsand X*A+Y*N=1

) therefore  X*A = 1-Y*N

therefore (X*A)%N = (1-Y*N) %N
therefore (X*AY%N = 13N - (Y*N)3N
and because Y*N must be a multiple of N, Y*N&N is zero,
therefore (X*D)%N = 1
SO modinv(A,N) = X = A'sN

Giving this function:
int modinv(int a, int n)
{ int g9, %, y;
g=extgcd(a, n, X, Vy):

if (g!=1)
{ fprintf(stderr, “Error: impossible modinv(%d, $d)\n”, a, n);
exit(1l); }

return x; }
and effectively allowing this to be considered true:
(A/B)$N = ((A%N) * modinv(B,N))3%N

Two Special Cases for Calculating Modular Inverse:

According to Fermat’s Little Theorem:
if N is prime, and A<N, then
modinv (A,N) = AV?3N
According to Euler’s Generalisation of Fermat’s Little Theorem:
if N is the product of two primes, N=pxq, and A<p, and A<q, then
modinv (A,N) = Al@PLx@l)-lgy



Finding Prime Numbers

Finding a Big Prime Number is a fairly easy problem, but can not be done quickly unless some small
chance of error is acceptable.

Checking that a number is prime, with absolute accuracy:

#include <stdio.h>
#include <stdlib.h>

long long int valof (char *s)
{ long long int n=0;
for (int i=0; 1; i+=1)
{ char c=s[i];
if (c==0) return n;
n=n*10+c-"'0"'; } }

void main(int argc, char *argvl[])
{ if (argc!=2)
{ fprintf(stderr, "Need a number on the command line\n");

exit (1l); }
long long int n=valof(argv[1l});
int ok=1;

if (n%2==0 && n!=2) ok=0;
int max=(int) (sgrt(n)+1);
for (int i=3; ok && i<max; i+=2)

if (n%i==0)

ok=0;

if (ok)

printf("%$1ld is definitely prime\n", n);
else

printf("%11ld is definitely NOT prime\n", n); }

To find a large prime number, the only known method is to pick a random number of the right size, and
see if its prime. If it is, the task is over. If it isn’t, just try the next number. Of course, you would have
enough sense to only test odd numbers, and it would also pay to eliminate multiples of 3, 5, 7, 11, and a
few other small primes before calling a primality-testing function.

The probability that an arbitrarily chosen number N is prime is 1/10g. (N), so not many numbers will
have to be tested before a prime is found. Even for 200-digit numbers, 1 in log. (10%°°), or 1 in

200x10ge (10), or 1 in 461 will be prime.

When testing the number N, the loop goes round ;YN times. That may seem fast, but secure encryption
uses very big numbers. If you want to check a 50 digit number for primeness, the loop will be executed
5,000,000,000,000,000,000,000,000 times.

Fortunately there is a faster trick: Probabilistic Prime Checking. Some rather complicated theory tells us
that for any random number R between 2 and N-2, calculate x=R‘ ™" /2'gn_ If N is prime, then x can
not possibly be equal to either N or to N-1. If N is not prime, the probability of x being equal to either N
or to N-1, is % So just pick lots of random Rs. If ever the value of x comes out to N or N-1 you
instantly know that N is not prime. If you survive K random selections, you now the probability of N not
being prime is *s".



#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int modpower (long long int a, long long int b, long long int m)
{ long long int r=1, p=a;
while (b>0)
{ 1f (b&l) r=(r*p)%m;
p=(p*p) ¥m;
b>>=1; }
return r; }

volid main(int argc, char *argv([])
{ if (argc!=3)

{ fprintf (stderr, "Need a number and a probability logarithm on the command line\n");
exit(1l); 1}

srandomdev () ;

int n=atol(argv[l]);

if (n%2==0 && n!=2)

{ printf("%d is definitely NOT prime\n", n);
exit(1); }

int pp=atol (argv(2]);

double p=exp (pp*log(10.0));

double psofar=1.0;

int ok=1;

while (psofar>p)

{ int r=random() % (n-2) + 2;
int x=modpower(r, (n-1)/2, n);
if (x!'=1 && x!=n-1) { ok=0; break; }
psofar*=0.5; }

if (ok)
printf("%d is prime with probability better than %.15f\n", n, 1.0-p);

else
printf("%d is definitely NOT prime\n", n); }

This algorithm has two parameters: N, the number we wish to check for primeness, and P the acceptable
probability of a wrong answer (actually P’s logarithm is provided, so an input of -6 means that a
probability of error of P=107° (one in a million) is acceptable. Usually a much lower probability is
required.

If this program says that a number is NOT prime, it is definitely correct.
If it says that a number IS prime, there is still a 107° probability that it actually isn’t.

The number of times around the loop is -10g, (P), which does not depend on the size of the number.
For a one-in-a-million chance of error, 20 times round the loop. For one-in-a-million-million, 40 times
round the loop, etc.

This program uses “long long” ints for intermediate calculations, but is still restricted to single precision
(32 bit) ints for the value of N.



