
This is the traditional “hello world” program. 
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import "io" 
 

let start() be 
  out("Greetings, Human.\n") 

 

 import is a lot like import in java, and a bit like #include in C++. 
 “io” is the standard library with input/output and other very basic functions. 
 let introduces most simple declarations, it is not a type. There are no types. 
 start serves the same purpose as main in java and C++. 
 be is required when defining a function like this. 
 The body of a function is a single statement, but see the next example. 
 out is the ancestor of C’s printf and java’s System.out.printf. 
 
Here is a bigger version. 

 
import "io" 
 

let start() be 
{ out("Greetings, Human.\n"); 
  out("Now go away and leave me alone.\n") } 

 
 Curly brackets combine multiple statements into one statement, called a block. 
 Semicolons are only required between statements, as a separator. 

(the original BCPL didn’t require semicolons at all, but that leads to too 
many preventable mistakes, so I made a change there) 

 But if you forget and put an extra one before the }, the compiler won’t complain. 
 
 
Now for some local variables. (from now on, I won’t show the import statement) 
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let start() be 
{ let x = 5, y = 10, z; 
  x := x + 1; 
  z := x * (y + 1); 
  y +:= 2; 
  out("x=%d, y=%d, z=%d\n", x, y, z) } 

 
 let introduces the declaration again. You know that x, y, and z are variables and 

not functions because they are not followed by (). 
 let is followed by any number of variable names all separated by commas. each 

variable may be given an initial value (like x and y), or left uninitialised (like z). 
 There can be any number of lets, you don’t have to declare all your variables on 

one line. 
 But lets are only allowed at the beginning of a block. All declarations must come 

before any executable statement. 
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 := is the symbol for an assignment statement. Unlike in C++, you can’t give 

yourself a hard-to-debug problem by accidentally typing = instead of ==. 
 Assignments are statements, not expressions. := can not be used as an operator in 

an expression. 
 +:= is an update assignment just like += in C and java. You can use it with all the 

operators you’d reasonably expect: *:=, ‐:=, /:=, /\:=, etc. 
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Names of variables and functions and other things 
 Must begin with a letter 
 May also include any number of letters, digits, underlines, and dots. 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
a b c d e f g h i j k l m n o p q r s t u v w x y z 
0 1 2 3 4 5 6 7 8 9 _ . 

 Capital letters and little letters are not distinguished. 
 cat, CAT, Cat, and cAt are just four ways of typing the same variable. 
 That applies to the rest of the language too: let, LET, and Let are the same thing. 
 Languages that distinguish between big and little letters are abominations. 
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let start() be 
{ let x; 
  x := 123; 
  out("x=%d\n", x); 
  x := "hello"; 
  out("x=%s\n", x); 
  x := 12.34; 
  out("x=%f\n", x) } 

 

 Variables do not have types, you can store anything you like in any variable. 
 It is up to the programmer to remember what kind of thing has been put in which 

variables. 
 Every variable is just a 32 bit value. How those bits are interpreted or used is 

determined by what you do with that variable. 
 The 32-bit values and memory locations are called “Words”, regardless of their use. 

All of memory is a giant array of words. 
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let start() be 
{ let x = 84; 
  out("%d in decimal is:\n", x); 
  out("  %x in hexadecimal and %b in binary\n", x, x); 
  out("  and is the ascii code for the letter %c\n", x) } 

 
 out uses %d for integers to be printed in decimal, 
 %x for integers to be printed in hexadecimal, 
 %b for integers to be printed in binary, 
 %c for integers to be printed as characters, 
 %f prints floating point values, and 
 %s prints strings. 



Input from the user 
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let start() be 
{ let x, y; 
  out("type a number. "); 
  x := inno(); 
  out("and another one: ");  
  y := inno(); 
  out("%d times %d is %d\n", x, y, x*y) } 
 

 inno waits for the user to type an integer in decimal, and returns its value. 
 inch reads a single character and returns its ascii value. 
 If you want to read anything more complicated than a decimal integer, you’ll have 

to write a function for it. 
 

let inbin() be 
{ let value = 0;       
  while true do 
  { let char = inch(); 
    if char < '0' \/ char > '1' then 
      resultis value; 
    value := value * 2 + char - '0' } } 
 
let start() be 
{ let x; 
  out("type a number in binary. "); 
  x := inbin(); 
  out("that is %d in decimal\n", x) } 

 
With that definition, inbin reads an integer from the user in binary. 

 
 while means the same as it does in C++ and java, but 

 you don’t need to put parentheses around the condition, and 
 you do need to put the word do after the condition. 

 true is exactly equivalent to ‐1, false is exactly equivalent to O. 
 while, and all other conditionals, accepts any non-zero value as being true. 
 
 if means the same as it does in C++ and java, but 

 you don’t need to put parentheses around the condition, and 
 you do need to put the word then or do after the condition. 
 if statements never have an else. 
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 The logical operators are /\ for and, \/ for or, and not or ~ for not. 

 /\ and \/ use short-circuit evaluation:  
in A /\ B, if A is false, B will not even be evaluated. 
in A \/ B, if A is true, B will not even be evaluated. 

 not replaces 0 (which is false) with -1 (which is true), 
 it replaces everything other than 0 with 0. 
 ~ is exactly the same thing as not. 
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 The relational operators for integer values are 

 < for less than,  
 > for greater than,  
 <= for less than or equal to,  
 >= for greater than or equal to,  
 = for equal to, don’t use ==.  
 <> for not equal to (it is saying less than or greater than) 
 /= also means not equal to, and so does \=, the three are identical. 

 Relational operators may be strung together: a<b<c means  a<b /\ b<c. 
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 resultis X means the same as return X; does in C++ and java: the function exits 
immediately, and returns X as its value, but. 
 resultis must always be given a value to return. 
 return is used to exit from a function that does not produce a value. 
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 Single quotes mean the same as in C++ and java: a character enclosed in single 

quotes is the integer value of its ascii code, but up to four characters may be 
enclosed in the single quotes, because 4 character codes can fit in 32 bits: 

'ab' = 'a'256 + 'b',  
'abc' = 'a'256256 + 'b'256 + 'c',  
'abcd' = 'a'256256256 + 'b'256256 + 'c'256 + 'd'.  
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Conditional Statements 
 

if x < 0 then count := count + 1; 
if y >= 0 do count := count - 1; 
if a + b > 100 then 
{ out("Too big!\n"); 
  finish } 

 
 In an if statement, then and do mean exactly the same thing. 
 finish is the same as exit() in C++ and java, except that it is a statement, not a 

function, so there is no () pair following it. It just stops the whole program. 
 

unless x >= 0 do count := count + 1; 
unless y < 0 do count := count - 1; 
unless a + b <= 100 then 
{ out("Too big!\n"); 
  finish } 

 
 unless X means the same as if not(X). 
 

test 1 <= x <= 10 then 
  out("Everything is fine\n") 
else 
  out("Panic! x = %d, out of range\n", x); 

 
 



 Neither if nor unless may take an else. 
 Allowing that in C++ and java makes the meanings some programs unclear in a 

way that most programmers are unaware of. 
 test is the thing to use. test is the same as if in C++ and java, but it must 

always have an else, else is not optional with test. 
 

test x < 1 then 
  out("Too small\n") 
else test x > 10 then 
  out("Too big\n") 
else 
  out("OK\n") 

 
 Of course tests may be strung together like that. 
 The word or may be used instead of else, they mean exactly the same thing. 
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Loops 
 

x := 1; 
while x < 10 do 
{ out("%d ", x); 
  x +:= 1 } 
 

 That prints 1 2 3 4 5 6 7 8 9 
  

x := 1; 
until x > 10 do 
{ out("%d ", x); 
  x +:= 1 } 
 

 That prints 1 2 3 4 5 6 7 8 9 10 
 until is just a reader-friendly way of saying while not. 
 until X means exactly the same as while not(X). 
  

x := 1; 
{ out("%d ", x); 
  x +:= 1 } repeat 
 

 That prints 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ... and never stops 
 repeat is the same as do ... while (true) in C++ and java. 
  

x := 1; 
{ out("%d ", x); 
  x +:= 1 } repeatwhile x < 10 
 

 That prints 1 2 3 4 5 6 7 8 9 
 repeatwhile is the same as do ... while in C++ and java, the body of the loop gets 

executed once even if the condition is initially false. 
  



 
x := 1; 
{ out("%d ", x); 
  x +:= 1 } repeatuntil x > 10 
 

 That prints 1 2 3 4 5 6 7 8 9 10 
 repeatuntil X is the same as repeatwhile not(X). 
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{ let x = 0; 
  while true do 
  { x +:= 1; 
    if x rem 3 = 0 then loop; 
    if x > 16 then break; 
    out("%d ", x) } 
  out("end\n") } 

 
 That prints 1 2 4 5 7 8 1O 11 13 14 16 end 
 rem is the remainder or modulo operator, like % in C++ and java. 
 Try to remember that % means something else and will cause very odd errors. 
 break means exactly the same as in C++ and java, it immediately terminates the 

loop that it is inside. It can only be used in a loop. 
 loop means exactly the same as in continue does in C++ and java, it abandons the 

current iteration of the loop that it is inside, and starts on the next. It can only be 
used in a loop. 
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{ let i = 1234, sum = 0; 
  for i = 3 to 25 by 3 do 
  { sum +:= i; 
    out("%d ", i) } 
  out("i=%d\n", i) } 

 
 That prints 3 6 9 12 15 18 21 24 i=1234 
 A for loop always creates a new temporary control variable, that variable does not 

exist any more once the loop ends. 
 The initial value and the final value may given by any expression. 
 The by value must be a compile time constant, meaning that the compiler must be 

able to work out its value before the program runs, so it can’t involve any variables. 
 

max := 9; 
for i = 1 to max+1 do 
{ if i = 5 then max := 20; 
  out("%d ", i) } 
out("max=%d\n", max) } 

 
 That prints 1 2 3 4 5 6 7 8 9 1O max=2O 
 The terminating value for a for  loop is calculated just as the loop starts, and is 

stored until the loop ends. It is not recalculated at each iteration. In the example, 
changing the value of max had no effect on how many times the loop ran. 



 If you don’t provide a by value, the compiler assumes 1. 
 

for i = 10 to 1 do 
  out("%d ", i) 

 
 That prints nothing at all. 
 If you want the loop to count backwards you must explicitly say by ‐1. 
 If the by value is positive, the loop runs while the variable is <= to the to value. 
 If the by value is negative, the loop runs while the variable is >= to the to value. 
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while true do 
{ let c = inch(); 
  switchon c into 
  { case ' ':  
          out("a space\n"); 
          endcase; 
    case '.':  
          out("a dot\n"); 
          endcase; 
    case '+': 
          out("a plus sign, "); 
    case '-': case '*': case '/': 
          out("an operator\n"); 
          endcase; 
    case '0' ... '9': 
          out("a digit\n"); 
          endcase; 
    case 'A' ... 'Z': case 'a' ... 'z': 
          out("a letter\n"); 
          endcase; 
    default: 
          out("something else\n") } } 
 

 switchon X into is just the same as switch (X) in C++ and java. 
 Execution jumps immediately and efficiently to the case label matching the value of 

the expression, which should be an integer. 
 switchon does not use a series of comparisons, so it is faster than a sequence of 

test else test else ... 
 endcase causes a jump to the end of the switchon statement. If no endcase is met, 

execution runs into the next case. In the example, a '+' gets the response “a plus 
sign, an operator”. 

 The case labels must be constants, and there may be no repetition (or in the case of 
ranges given with ..., there must be no overlap). Each possible value may only 
appear once. 

 The default label catches all values that are not covered by a case label. 
 default is not required. Without it, unmatched values do nothing. 
 The overall range of all the case values must not be very large, or the resulting 

executable code will be too big to run. 
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if count = 0 then 
  debug 12 

 

 debug causes program execution to be suspended, and control is delivered to the 
assembly language debugger. debug must be followed by a constant which will be 
visible in the debugger to identify which debug point was reached. 

 
Disapproved-of Statements 
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let start() be 
{ let a = 0; 
  start: a +:= 1; 
  if a rem 10 = 4 then goto start; 
  if a > 100 then goto elephant; 
  out("%d ", a); 
  goto start; 
  elephant: } 

 
 That program will count from 1 to 100, skipping numbers whose last digit is 4, 

then stop. 
 Any statement or } may be given a label. Labels are names with the same rules as 

variables, and are attached to a statement with a colon. 
 Reaching a label has no effect on execution. 
 A goto statement causes an immediate jump to the statement with the matching 

label. 
 It is not possible to jump into a block from outside it, and it is not possible to jump 

to a label in a different function. Labels are in fact local variables. A new value may 
be assigned to a label at any time (e.g. elephant := start). 

 goto may be followed by an expression. If the value of the expression does not turn 
out to be a label, the results are unpredictable. 

 
 Anything that happens in a program that uses a goto is the programmer’s own 

fault, and no sympathy will be received. 
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let start() be 
{ /* this function is to demonstrate 
     the use of comments in a program. 
     comments may be very big or very 
     small or anything in between */ 
  let a = 0; 
  let b = 0; // b is the hypotenuse 
  let c = 5, d = 99; 
  a := (c+1)*(d-1); 
  if a < 20 /* not good */ then out("%d ", a); 
  d := c - 4; 
  a := 0 // the curly bracket on this line is ignored } 
} // so we need an extra one here 



 
Functions 
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import "io" 
 

let factorial(n) be 
{ let f = 1; 
  for i = 1 to n do 
    f *:= i; 
  resultis f; } 
 

let display(a, b) be 
{ out(" N N!\n"); 
  out("---------\n"); 
  for i = a to b do 
    out(" %d %d\n", i, factorial(i)); 
  out("----------\n") } 
 

let average(x, y) = (x+y)/2 
 

let start() be 
  display(3, average(7, 11)) 

 
 That program prints a table of factorials from 3 to 9. 
 If a function has parameters, their names are listed between the parentheses in its 

declaration, separated by commas. Nothing else can go in there, there is nothing to 
say about a parameter except for its name. 

 Parameters behave just like local variables. 
 If a function’s result can be expressed as a single expression, the simplified form as 

used for average may be used. Any expression may follow the =. 
 If a function only consists of a single statement, the { and } are not required. 
 resultis is used to exit a function and return a value, 
 return is used to exit a function without returning a value. 
 
 When a function is called, it is not necessary to provide the correct number of 

parameter values. If too few values are provided, the last parameters will simply be 
uninitialised variables. 

 BUT: any attempt to assign to or modify an un-passed parameter will have 
disastrous and hard-to-trace consequences. 
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let f(x, y) be { ... } 
and g(a) be { ... } 
and h(p, q, r) be { ... } 

 

 Every function must be declared before it is used. There are no prototypes, 
simultaneous declaration is used instead. 

 When function definitions are linked together using and instead of repeated lets, 
all of those functions are declared before any of their defining statements are 
processed. 

 In the example above, each of the three functions f, g, and h may call any or all of 
those same three functions. 
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let process(a, b) be 
{ let f(z) = (z+10)*(z-10); 
  let modify(x) be 
  { let z = f(x+1); 
    if z < 0 then resultis 1; 
    resultis x+3 } 
  let sum = 0; 
  for i = a to b do 
    sum +:= modify(i); 
  resultis sum } 

 
 Functions may have their own local function definitions. 
 In the example, the function modify is only available within the function process. 

Elsewhere the name modify has no meaning, just as with local variables. 
 This feature is of limited usefulness; modify is not permitted to access any of 

process’s parameters or local variables, although it can access other local 
functions. 
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let increment(x) be 
{ let total; 
  if numbargs() = 0 then total := 0; 
  total +:= x; 
  out("  the total is now %d\n", total) } 
 
let start() be 
{ out("reset\n");  increment(); 
  out("add 1\n");  increment(1); 
  out("add 2\n");  increment(2); 
  out("add 1\n");  increment(1); 
  out("add 1\n");  increment(1); 
  out("reset\n");  increment(); 
  out("add 2\n");  increment(2); 
  out("add 1\n");  increment(1); 
  out("add 3\n");  increment(3) } 

 
 The library function numbargs() returns the number of parameters (arguments) 

that the current function was called with. 
 The idea of the example is that the variable total is used to accumulate all the 

values increment has been given. Calling increment with no parameters is a signal 
to reset the total back to zero. 

 Naively we might expect it to report totals of 0, 1, 3, 4, 5, 0, 2, 3, and 6. 
 Of course it doesn’t work. Local variables are created anew each time a function is 

called, and lost when it exits. 
 

 
 
 
 
 



let total = 0; 
 
let increment(x) be 
{ if numbargs() = 0 then total := 0; 
  total +:= x; 
  out("  the total is now %d\n", total) } 
 

 This alternative definition does work. let creates local or global variables depending 
upon whether it is used inside or outside of a function. 

 A global variable isn’t the ideal solution here. total is supposed to be private to 
increment. Now there is a risk that other functions could change it. 
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let increment(x) be 
{ static { total = 0 } 
  if numbargs() = 0 then total := 0; 
  total +:= x; 
  out("  the total is now %d\n", total) } 
 

 This version solves both problems. It works. 
 A static variable is a private global variable. It is created and initialised only once, 

when the program is started, and it exists until the program ends, but it is only 
visible inside its enclosing function. Elsewhere the name is unknown. 

 A number of static variables may be declared at once, inside the same static { }, 
as in static { total=O, min=99, max=‐1 }. 

 If increment had any local functions, they would be permitted to access increment’s 
static variables. 
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let array(a, b) be 
{ test lhs() then 
    out("you said array(%d) := %d\n", a, b) 
  else test numbargs() = 1 then 
  { out("you said array(%d)\n", a);       
    resultis 555 } 
  else 
    out("you said array(%d, %d)\n", a, b) } 
     
let start() be 
{ let v, w; 
  array(2) := 345;       
  array(3) := 9876; 
  v := array(2); 
  w := array(3); 
  out("v+w = %d\n", v+w) } 

 
 There are no arrays is this example, array is just a normal function. 
 A function call may appear on the left-hand-side of an assignment statement, as in 

array(2) := 345                   or 
storage(34, x+9) := y*z 

 When that happens, it is just treated as a normal function call, but the expression 
to the right of the := becomes an extra parameter, 



 and inside the function, the library function lhs() returns true instead of its 
normal value of false. lhs() is true if the function call is the left-hand-side of an 
assignment. 

 This allows an approximation of the get and set methods of object oriented 
programming to be implemented with a reader-friendly syntax, as the example is 
hinting. 

 The example prints 
you said array(2) := 345 
you said array(3) := 9876 
you said array(2) 
you said array(3) 
v+w = 1110 
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Very Local Variables 
 

let start() be 
{ let a = 3, b = 4, c, d; 
  c := t*(t+1) where t = a+2*b-1;         
  d := x*x + y*y where x = a+b+1, y = a-b-2; 
  out("c=%d, d=%d\n", c, d) } 
 

 The where clause introduces one or more temporary local variables. 
 where attaches to a whole single statement. Of course, that statement could be a 

block of many statements inside { }. 
 Those variables exist only for the execution of that one statement, then they are 

destroyed leaving no trace. 
 The example prints c=11O, d=73. 
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manifest 
{ pi = 3.14159, 
  size = 1000, 
  maximum = 9999, 
  half = maximum/2 } 

 
 A manifest declaration introduces one or more named constants. 
 The value of a manifest constant can not be changed deliberately or accidentally by 

a running program. 
 manifest declarations may be global or local inside a function. 
 The values given to manifest constants must be compile time constants, values that 

the compiler can easily work out before the program runs. They may not make use 
of any variables or functions, nor may they be strings. 

 manifest is the ancestor of const in C++ and final in java. 
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let addup(a) be 
{ let sum = 0, ptr = @ a;                 
  for i = 0 to numbargs()-1 do 
  { sum +:= ! ptr; 
    ptr +:= 1 } 
  resultis sum } 
 
let start() be 
{ out("1 to 5: %d\n", addup(1, 2, 3, 4, 5)); 
  out("3+12+7: %d\n", addup(3, 12 ,7)); 
  out("nothing: %d\n", addup()) }        

 
 @ is the address-of operator. It provides the numeric address of the memory 

location that a variable is stored in. 
 ! is the follow-the-pointer operator. It assumes that its operand is a memory 

address and provides the contents of that location. 
 Every variable and every value is 32 bits long, and memory locations are 32 bits 

long. 
 Parameters to a function are always stored in neighbouring memory locations, in 

ascending order, so addup successfully adds up all its parameters regardless of how 
many there are. This is also how out works. 
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let glo = 7   
 
let start() be 
{ let var = 10101; 
  let ptr = @ glo; 
  ! ptr := 111; 
  ! ptr *:= 2; 
  ptr := @ var; 
  ! ptr +:= 2020; 
  out("glo = %d, var = %d\n", glo, var) } 

 
 An ! expression can be the destination in an assignment. 
 The sample program prints glo = 222, var = 12121. 
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let start() be 
{ let fib = vec 20; 
  fib ! 0 := 1; 
  fib ! 1 := 1; 
  for i = 2 to 19 do 
    fib ! i := fib ! (i-1) + fib ! (i-2); 
  for i = 0 to 19 do 
    out("%d\n", fib ! i) } 

 
 vec is a special form that can be used as the initial value for any variable. It is not 

an expression that can be used in assignments or anywhere else. 
 Its argument must be a compile-time constant. 



 When name  =  vec  size appears, name is declared as an ordinary variable, and 
immediately next to it in memory a space of exactly size words is left uninitialised. 
The value of name is set to the address of the first of these locations. 

 So fib is a pointer to an array of twenty 32-bit values. 
 If vec appears as the value of a local variable, it is a local temporary array with the 

same lifetime as the variable. If vec appears as the value of a static or global 
variable, it is a permanent array. 

 
 The infix form of the ! operator is very simple. Its exact definition is 

A ! B  ! (A + B) 
 It is like using [ ] to access an array in C++ and java, except that it is symmetric, 

A ! B is always the same thing as B ! A. 
 fib was initialised to vec  2O, which means fib is a variable that contains the 

address of the first of an array of 20 memory locations. Thus fib+1 is the address 
of the second in that array, and fib!1 accesses the value stored there. 

 The sample prints the first 20 fibonacci numbers. 
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let total(v, n) be 
{ let sum = 0; 
  for i = 0 to n-1 do 
    sum +:= v ! i; 
  resultis sum } 
 
let start() be 
{ let items = table 23, 1, 2*3, 9, 10;  
  let twice = vec(5); 
  for i = 0 to 4 do 
    twice ! i := 2 * items ! i; 
  out("the total of items is %d\n", total(items, 5)); 
  out("the total of twice is %d\n", total(twice, 5)) } 

 
 A table is a pre-initialised array. The value of items is the address of the first of a 

sequence of five memory locations. When the program first starts, the values 23, 1, 
6, 9, and 10 are stored in those locations, and they are never re-initialised. The 
elements of a table behave like static variables. 

 The values in a table must be compile-time constants, strings, or other tables. 
 The variables items and twice both contain pointers to arrays, when they are used 

as parameters in a function call, it is those pointers that are copied, the @ operator 
is not used. 

 Inside the function, the parameter v has exactly the same value as items or twice, 
so it is used in exactly the same way. 
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let makearray() be 
{ let a = vec(10); 
  for i = 0 to 9 do 
    a ! i := 2 ** i; 
  resultis a }  
 
let start() be 
{ let powers = makearray(); 
  out("The answer is\n"); 
  for i = 0 to 9 do 
    out("  %d\n", powers ! i) } 

 
 ** is the to-the-power-of operator for integers. 
 The makearray function is wrong. The memory occupied by a, i, and the array itself 

is temporary and local to the function. As soon as the function exits, it can be re-
used for something else. 

 powers does receive the address of the memory locations that the array used to 
occupy, but it has been re-used, so the expected values are no longer there. 

 To do this correctly, the newvec library function is used. newvec is a bit like new in 
C++ and java, but much more basic. It is closer to malloc in C. 

 
This is selection sort. 
 

let sort(array, size) be 
{ for i = 0 to size-1 do 
  { let minpos = i, minval = array ! i; 
    for j = i+1 to size-1 do 
      if array ! j < minval then 
      { minpos := j; 
        minval := array ! j } 
    array ! minpos := array ! i; 
    array ! i := minval } } 
 
let start() be 
{ manifest { N = 20 } 
  let data = vec(N); 
  random(-1); 
  for i = 0 to n-1 do 
    data ! i := random(99); 
  sort(data, N); 
  for i = 0 to n-1 do 
    out("%2d\n", data ! i); 
  out("\n") } 

 
 Normally random(N) will produce a random number between O and N inclusive. 
 It is of course a pseudo-random number generator: every time you run the program 

it will produce the same sequence of numbers. 
 random(‐1) changes that. It should be used just once in a program, it randomises 

the pseudo-random number sequence so that it will not be predictable. 
 



 the format %2d given to out ensures that the number printed occupies at least 2 
character positions, so numbers in the range 0 to 99 will all be aligned in a column. 

 The width setting after the % may be any positive number, spaces are added to the 
left to pad small numbers out. 

 A width setting may be used with %x (for hexadecimal) and %b (for binary) too. 
 A width setting may be used with %s (for strings), but then the extra spaces are 

added to the right. 
 If a zero precedes the width setting with %d, %x, or %b, then zeros are used for 

padding instead of spaces. %O32b prints all 32 bits of a number in binary, including 
the leading zeros. 
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let makearray(n) be 
{ let a = newvec(n+1); 
  for i = 0 to n do 
    a ! i := 2 ** i; 
  resultis a } 
 
let experiment() be 
{ let heap = vec(10000); 
  let powers1, powers2; 
  init(heap, 10000); 
   
  powers1 := makearray(10); 
  powers2 := makearray(20); 
  out("The answers are\n"); 
  for i = 0 to 10 do 
    out("  %d\n", powers1 ! i); 
  for i = 0 to 20 do 
    out("  %d\n", powers2 ! i); 
  freevec(powers1); 
  freevec(powers2) } 

 
 This is an earlier example of something that doesn’t work, but corrected. 
 newvec is like vec, it gives a pointer to an array. But it doesn’t use temporary 

memory that is local to the function, it uses permanent heap memory that will 
never* be recycled, so the pointer remains valid for ever*. newvec is similar to new in 
C++ and java. 

 Unlike vec, newvec(X) is a normal function call, it can be used anywhere in a 
program, and its parameter can be any expression. 

 In every other way, an array created by newvec is indistinguishable from an array 
created by vec. 

 freevec is the function used to release newvec allocations for recycling. 
 
 The library-supplied version of newvec is extremely primitive. It can not request 

additional memory allocations from the operating system because there is no 
operating system. 

 Instead, before first using newvec in a program, the programmer must create a 
normal array big enough to supply the total of all newvec allocations the program 
will ever make. newvec just takes chunks out of this array as requested. 



 init is the function used to give this big array to the newvec system. Its first 
parameter is the array, and the second is its size. 
 

 The best method is as illustrated above. Create a large vec inside start, and give it 
to init before newvec is ever used. *If this is done, newvec allocations really will 
remain valid for ever, and never be recycled. 

 But in the example above, init is given a vec that is local do a different function, 
experiment. So when experiment ends, all the newvecs will automatically 
evapourate. 

 
These are the definitions of init and newvec from the io library: 
 

static { vecsize = 0, vecused = 0, vecspace } 
 
let lamest_newvec(n) be 
{ let r = vecspace + vecused; 
  if vecused + n > vecsize then 
  { outs("\nnewvec: insufficient free memory\n"); 
    finish } 
  vecused +:= n;  
  resultis r } 
                   
let lamest_freevec(v) be 
{ }                 
 
static { newvec = lamest_newvec, 
         freevec = lamest_freevec } 
                   
let init(v, s) be    
{ vecsize := s; 
  vecspace := v;    
  vecused := 0 } 
 

 freevec and newvec are really just global variables whose initial values are the aptly 
named lamest_freevec and lamest_newvec. 

 When a function call f(x, y) is executed, f can be any expression. So long as its 
value is the address of a function, it will work. The name of a function represents 
its address in memory, so the @ operator is not used. 

 This way, programs can replace the values of newvec and freevec with better 
functions. 
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manifest 
{ node_data = 0, 
  node_left = 1, 
  node_right = 2, 
  sizeof_node = 3 } 
 

let new_node(x) be 
{ let p = newvec(sizeof_node); 
  p ! node_data := x; 
  p ! node_left := nil; 
  p ! node_right := nil; 
  resultis p } 
 

 When implementing a binary tree of integers, each node is a very small object. It 
just contains three 32-bit values: the data item, the address of the node to the left, 
and the address of the node to the right. 

 It might as well just be a three element array. The programmer decides which array 
positions the three items will occupy and defines well-named constants to make the 
program comprehensible. 

 new_node is effectively a constructor for such a node. 
 nil is a constant equal to 0. It does the same job as NULL in C++ and null in java. 

Its only purpose is to indicate “no pointer here”. 
 
let add_to_tree(ptr, value) be 
{ if ptr = nil then 
    resultis new_node(value); 
  test value < ptr ! node_data then 
    ptr ! node_left := add_to_tree(ptr ! node_left, value) 
  else 
    ptr ! node_right := add_to_tree(ptr ! node_right, value); 
  resultis ptr } 
 

let inorder_print(ptr) be 
{ if ptr = nil then return; 
  inorder_print(ptr ! node_left); 
  out("%d ", ptr ! node_data); 
  inorder_print(ptr ! node_right) } 
 

let start() be 
{ let heap = vec(10000); 
  let tree = nil; 
  init(heap, 10000); 
  for i = 1 to 20 do 
  { let v = random(99); 
    tree := add_to_tree(tree, v); 
    out("%d ", v) } 
  out("\n"); 
  inorder_print(tree); 
  out("\n") } 
 

 Those three functions are nothing special. They just create a tree of random 
numbers, then print them in order. 
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let start() be 
{ let s = "ABCDEFGHIJKLMN"; 
  for i = 0 to 3 do 
    out("%08x\n", s ! i) } 
 

44434241 
48474645 
4C4B4A49 
00004E4D 

 
 Every memory location is 32 bits wide, ASCII characters only require 8 bits. A 

string is just an array in which character codes are packed 4 per entry. 
 The %O8x format prints a number in hexadecimal, stretched out to the full 8 digits, 

with leading zeros added if necessary. 
 In hexadecimal, the ASCII codes for the letters A, B, C, D, E are 41, 42, 43, 44, 45 

and so on. 
 The first character is stored in the least significant 8 bits of a string. That makes 

the output look backwards, but it makes more sense for programming. 
 A string is always 8 bits longer than would be required for the characters alone. 

The end of a string is marked by 8 bits of zero. 
 

let start() be 
{ let a = vec(6);           
  a ! 0 := 0x44434241; 
  a ! 1 := 0x48474645; 
  a ! 2 := 0x4C4B4A49; 
  a ! 3 := 0x4E4D; 
  out("%s\n", a) } 
 

ABCDEFGHIJKLMN 
 
 A constant string in "double quotes" is just an array (in static memory) initialised 

with the character codes when the program starts, just like a table. 
 But naturally, any array that is big enough can be used as a string. 
 Ox prefixes a numeric constant written in hexadecimal. Oo may be used for octal, 

and Ob for binary. 
 

let strlen(s) be                
{ let i = 0; 
  until byte i of s = 0 do    
    i +:= 1; 
  resultis i }  

 
 That is the strlen function from the standard library, it returns the length (number 

of characters not including the terminating zero) of a string. 
 of is an ordinary two-operand operator. Its left operand describes a sequence of 

bits within a larger object. Its right operand should be a pointer (memory address). 
 byte is an ordinary one-operand operator. Its result is a perfectly ordinary number 

that is interpreted by of to describe one single character of a string. 



 Due to hardware limits, byte and of can only be used to access the first 8,388,604 
characters of a string. 

 
let start() be 
{ let alpha = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; 
  let p; 
  out("byte 23 of alpha = '%c'\n", byte 23 of alpha); 
  p := byte 23; 
  out("byte 23 = %d\n", p); 
  out("5896 of alpha = '%c'\n", 5896 of alpha) } 
 
byte 23 of alpha = 'X' 
byte 23 = 5896 
5896 of alpha = 'X' 

 
 byte is a perfectly ordinary operator whose result is a perfectly ordinary number. 
 

let start() be 
{ let s = vec(8); 
  let letter = 'z'; 
  for i = 0 to 25 do 
  { byte i of s := letter; 
    letter -:= 1 } 
  byte 13 of s -:= 32; 
  out("%s\n", s) } 
 

zyxwvutsrqponMlkjihgfedcba 
 
 byte ... of can be used as the destination in an assignment or an update. 
 The letter M became capital because the difference between the codes for capital 

letters and little letters in ASCII is 32. 
 Writing byte 13 of s ‐:= 'a'‐'A'; would have made that clear. 
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let start() be 
{ let bits = 0b10001000100010001101101101100010; 
  let sel = selector 11 : 5; 
  let part = sel from bits; 
  out("%b\n", bits); 
  out("                %b\n", part);  
  sel from bits := 0b01010101010; 
  out("%b\n", bits) } 
 

10001000100010001101101101100010 
                11011011011 
10001000100010000101010101000010 

 
 selector is like byte, but it is not limited to describing 8-bit items. 
 selector B : R describes the B-bit region of a word that has R bits to the right of 

it. 
 B may not be more than 32 nor equal to 0. 



 B+R may not be more than 32. 
 B and R do not have to be constants, any expression will do. 
 from is like of, but it is not given a pointer, it is given the actual 32-bit value to 

select bits from. 
 from may be used as the destination in an assignment or an update. 
 

let start() be 
{ manifest { those = selector 16 : 8 : 2 }  
  let them = table 0x13578642, 0xBEEFFACE, 0x1A2B3C4D, 0xE8500C2A; 
  out("%x\n", them ! 2); 
  out("  %x\n", those of them); 
  those of them := 0x9988; 
  out("%x\n", them ! 2); 
  selector 1 : 31 : 2 of them := 1; 
  out("%x\n", them ! 2) } 
 

1A2B3C4D 
  2B3C 
1A99884D 
9A99884D 

 
 selector B : R : N describes the B-bit region of a word that has R bits to the right 

of it, in word N of an array. 
 selector B : R is an abbreviation for selector B : R : O. 
 When a selector value is used with the from operator, the N portion is ignored 

because from works on a single word, not an array. 
 byte X is exactly equivalent to selector 8 : (X rem 4) * 8 : X / 4. 
 There is no form of selector that can describe a sequence of bits that are not all 

contained within the same word. 
 When bits are extracted using from or of, the most significant is not treated as a 

sign bit, everything is assumed to be positive. 
 The result of selector is a single value that contains B, R, and N. B occupies the 

least significant 5 bits (with 32 being represented by 00000), R occupies the next 5 
bits, and N the remaining 22 bits. N can be negative. Thus N can not exceed 
2,097,151. 

 x := selector B : R : N is equivalent to 
selector 5 : 0 from x := B; 
selector 5 : 5 from x := R=32 -> 0, R; 
selector 22 : 10 from x := N 
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 A ‐> B, C is the conditional operator that is spelled A ? B : C in C++ and java. 
 If A is false (i.e. zero), its value is the value of C, and B is never evaluated. 
 If A is not zero, its value is the value of B, and C is never evaluated. 
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  let x = 0x98765432; 
  out("%08x\n%08x\n%08x\n", x, x << 12, x >> 12) 
 

98765432 
65432000 
00098765 
 

 << is the left shift operator. 
 A << B is the value of A shifted B bits to the left. The leftmost B bits are lost, the 

rightmost B bits become zero. 
 One hexadecimal digit equals four binary digits, so << 12 is a 3 digit hexadecimal 

shift. 
 >> is the right shift operator. 

 
  out("%08x\n%08x\n%08x\n", x, x alshift 12, x arshift 12) 
 

98765432 
65432000 
FFF98765 
 

 alshift and arshift are the arithmetic left and right shift operators. 
 alshift is exactly the same as <<, it is only included for completeness. 
 arshift preserves the sign (most significant) bit, so for negative numbers the new 

bits appearing from the left are ones. 
 A alshift B computes A * 2B. 
 A arshift B computes A / 2B. 

 
  out("%08x\n%08x\n%08x\n", x, x rotl 12, x rotr 12) 
 

98765432 
65432987 
43298765 
 

 rotl and rotr are the arithmetic left and right rotate operators. 
 They perform normal shifts, but the bits that fall off at one end reappear at the 

other instead of zeros, so nothing is lost. 
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  let a = 0b10011001110101100100111001100101, 
      b = 0b11001010101110001010010011111100, 
      s =  "--------------------------------"; 
  out("%032b\n%032b\n%s\n%032b\n", A, B, S, A bitand B) 
 

10011001110101100100111001100101 
11001010101110001010010011111100 
-------------------------------- 
10001000100100000000010001100100 

 
 bitand is the bit-by-bit and operator, the same as & in C++ and java. 
 Each bit in the result is 1 only when both corresponding bits in the operands are 

also 1. 



 
  out("%032b\n%032b\n%s\n%032b\n", A, B, S, A bitor B) 
 

10011001110101100100111001100101 
11001010101110001010010011111100 
-------------------------------- 
11011011111111101110111011111101 

 

 bitor is the bit-by-bit or operator, the same as | in C++ and java. 
 Each bit in the result is 1 when any of the corresponding bits in the operands is 

also 1. 
 

  out("%032b\n%s\n%032b\n", A, S, bitnot A)           
 

10011001110101100100111001100101 
-------------------------------- 
01100110001010011011000110011010 

 

 bitnot is the bit-by-bit not operator, the same as ~ in C++ and java. 
 Each bit in the result is the opposite of the corresponding bit in the operand. 
 

  out("%032b\n%032b\n%s\n%032b\n%032b\n",  
                                 A, B, S, A eqv B, A neqv B);    

10011001110101100100111001100101 
11001010101110001010010011111100 
-------------------------------- 
10101100100100010001010101100110 
01010011011011101110101010011001 

 

 eqv is the bit-by-bit logical equivalence operator. 
 Each bit in the result is 1 when only when the corresponding bits in the operands 

are equal, either both 0 or both 1. 
 neqv is the opposite of eqv, usually called “exclusive or”, and the same as ^ in C++ 

and java. 
 Each bit in the result is 1 when only when the corresponding bits in the operands 

are different. 
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let count = 0; 
for i = 1 to 32 do 
{ if n bitand 1 then count +:= 1; 
  n rotl:= 1 } 
 

 That code fragment counts the number of ones in the binary representation of N, 
without changing the value of N. 

 BEWARE! The bit-by-bit operators have the same priority as the corresponding 
logical operators, which are lower than the relational operators. That is not the 
same as in C++ and java. 

 if n bitand 1 = 1 then ... would be interpreted as  
if n bitand (1 = 1) then ..., which is the same as  
if n bitand true then ..., which is the same as  
if n bitand 0b11111111111111111111111111111111 then ..., which is the same as  
if n then ... 
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manifest { pi = 3.1415927 } 
 
let start() be 
{ let width = 2.75, height = 6.125; 
  let area = width #* height; 
  let perimeter = (width #+ height) #* 2.0; 
  let circarea = pi #* width #** 2; 
  out("area = %f\n", area); 
  out("perimeter = %f\n", perimeter); 
  out("circle area = %f\n", circarea) } 
 

area = +1.684375e+01 
perimeter = +1.775000e+01 
circumference = +2.375829e+01 

 
 The floating point operators are the same as the integer operators, but with a # 

prefixed to their names. 
 #+, #‐, #*, and #/ assume their operands are both floating point values, and 

produce a floating point result. If the operands are of the wrong type the results are 
meaningless. 

 #** raises a floating point number to an integer power. 
 #<, #>, #<=, #>=, #=, #<>, (and #/= and #\=) assume their operands are both floating 

point values, and produce result of either true or false. If the operands are of the 
wrong type the results are meaningless. 

 Exception: O and O.O have the same representation, so are interchangeable. 
 There are not special variations of the %f output format. 
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manifest { pi = 3.1415927 } 
 
let start() be 
{ let radius = 10; 
  let circumf1 = 2.0 #* pi #* radius; 
  let circumf2 = 2.0 #* pi #* float radius; 
  let millpi = (fix (1000.0 #* pi)) * 1000; 
  out("circumf1 = %f\n", circumf1); 
  out("circumf2 = %f\n", circumf2); 
  out("million pi about %d\n", millpi) } 
 

circumf1 = +8.828181e-44 
circumf2 = +6.283185e+01 
million pi about 3141000 

 
 See what happens when integers and floating point values are carelessly mixed? 
 float takes an integer operand and converts it to floating point format. 
 fix takes an floating point operand and converts it to integer format. It uses 

truncation towards zero, not rounding. 
 float and fix are not functions, they are operators with high priority. 
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  let ia = 123, ib = -456; 
  let fa = 3.2714e9, fb = -1.044e-11; 
  let fc = #- fa; 
  out("%d -> %d\n", ia, abs ia); 
  out("%d -> %d\n", ib, abs ib); 
  out("%f -> %f\n", fa, #abs fa); 
  out("%f -> %f\n", fb, #abs fb); 
  out("%f -> %f\n", fc, #abs fc) } 
 

123 -> 123 
-456 -> 456 
+3.271399e+09 -> +3.271399e+09 
-1.044000e-11 -> +1.044000e-11 
-3.271399e+09 -> +3.271399e+09 
 

 abs and #abs are also high priority operators. They find absolute values. 
 The e notation for times-ten-to-the-power-of may be used in floating point 

constants. It is not an operator, it is part of the denotation of the number. 
 +, ‐, and #‐ have unary versions too. 
 A leading ‐ attached to a numeric constant is part of the number, not an operator, 

so negative floating point numbers may be written in the normal way, without a #. 
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  a := 7; 
  b := 10; 
  c := 1; 
  d := b * valof { let f = 1; 
                   for i = 1 to a do 
                     f *:= i; 
                   resultis f } + c; 

 

 valof is a unary operator whose operand is a block - even if it is just one 
statement, it still needs the enclosing { }. 

 The sample code sets d to ten times the factorial of 7 plus 1. 
 valofs are of marginal usefulness. 

 
45 

let max(a, b) be test a>b then resultis a else resultis b; 
let min(a, b) be test a<b then resultis a else resultis b; 
 

let start() be 
{ let x = 37, y = 12; 
  let range = x %max y - x %min y; 
  out("the range is %d\n", range) } 

 

 The % sign allows a function to be used as an infix operator. 
 % must be prefixed directly to a function name, it is not itself an operator, and can 

not be applied to an expression whose value is a function. 
 x %name y means exactly the same as name(x, y). 
 %name has a higher priority than any other operator except the unary ones. 
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Assembly language may be incorporated directly into programs 
 

let f(x, y) = x*1000+y 
 
manifest { number = 123 } 
 
let hippo = 0 
 
let start() be 
{ let cat = 7, goldfish = 3; 
  assembly 
  { load  r1, [<goldfish>] 
    add   r1, <number> 
    mul   r1, 10 
    store r1, [<hippo>] 
    push  77 
    load  r1, [<cat>] 
    mul   r1, [<goldfish>] 
    push  r1 
    push  4 
    call  <f> 
    add   sp, 3 
    store r1, [<goldfish>] } 
  out("hippo=%d, goldfish=%d\n", hippo, goldfish) } 

 

 After the word assembly, the assembly language must be enclosed in { } even if it 
consists of only one statement. 

 Inside the assembly language, names surrounded by < > will be replaced by their 
correct form in assembly language, but they must be the names of variables, 
functions, or manifest constants. 

 Everything else is passed directly to the assembler without any further processing. 
Any errors will be reported by the assembler in a possibly unhelpful way after 
compilation is complete. 

 The assembly language in the example is equivalent to 
hippo := (goldfish+number)*10; 
goldfish := f(cat*goldfish, 77) 

the program prints hippo=126O, goldfish=21O77 
 The assembly language and machine architecture are documented separately. 
 The calling convention is that parameter values are pushed in reverse order, then a 

value equal to numbargs()*2+(lhs()‐>1,O) for the called function is pushed, then 
the function is called, then the stack is adjusted to remove the pushed values. 
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The escape codes that may appear inside string and character constants are: 
 

\\ which represents \ 
\"  " 
\'  ' 
\n  newline, ascii 10 
\r  return, ascii 13
\t  tab, ascii 9
\b  backspace, ascii 8
\s  ordinary space, just so it can be made explicit
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Summary of Priorities within Expressions 
 

priority   section 
17, highest constants, identifiers, 

parenthesised subexpressions, 
valof block 

 
4 
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16 F(A, B, C, ...) function calls 20 
15 +, -, #-,  

not, ~,  
bitnot,  
!, @,  
abs, #abs,  
float, fix 

unary operators 

43 
8 
39 
30 
43 
42 

14 %NAME infix function call 45 
13 ! array access 30 
12 **, #** to the power of 32, 41 
11 *, #*, /, #/, rem multiplicative 14, 41 
10 +, #+, -, #- additive 41 
9 selector, byte, from, of bit ranges 35, 36 
8 <<, >>,  

alshift, arshift, rotl, rotr 
shifts and rotations 38 

7 <, >, <=, >=, <>, /=, \=,  
#<, #>, #<=, #>=, #<>, #/=, #\= 

relational 9 
41 

6 /\, bitand conjunctions 8, 39  
5 \/, bitor disjunctions 8, 39 
4 eqv equivalence 39 
3 neqv exclusive or 39 
2 -> , conditional 37 
1, lowest table tables 31 
 
 
 
 
 
 
 



Functions in the library “io” 
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out(format, ...) 
 See sections 1, 2, 5, 6, and 32. 
 
outch(c) print a single character 
outno(n) print a single integer in decimal 
outhex(n) print a single integer in hexadecimal 
outbin(n) print a single integer in binary 
outf(f) print a single floating point number 
outs(s) print a single string 
 These functions add nothing. The are the helper functions used by out(). 
 
inch() 

Read a single character from the input stream, return its ASCII code. inch() 
does not return a value until a whole line has been typed and terminated with 
ENTER, apart from this the only characters given special treatment are control‐C 
which stops a program, and backspace. The default buffer used to store the 
input until ENTER is pressed has space for only 100 characters. 

 
set_kb_buffer(V, size) 

V should be a vector size words long. V replaces the default buffer used by 
inch(), so that up to size*4-5 characters may be typed before pressing ENTER. 

 
inno() 
 Read an integer in decimal, return its value. Uses inch(). 
 
numbargs() 

Returns the number of parameters the current function was called with, see 
section 23. 

 
lhs() 

Returns true if the current function call was the left hand side of an assignment. 
See section 25. 

 
thiscall() 

Returns a reference to the current stack frame. 
 
returnto(sf, value) 

Returns from all active functions until the one represented by sf (previously 
obtained from thiscall()) is reached. value is used as the resultis value 
from the last exitted function. value is optional. 

 
init(ptr, sz) 

Must be used just once before newvec is ever used. See section 33. 
 
newvec(sz) 

Allocates a vector of size sz from heap memory. See section 33. 
 
 



freevec(ptr) 
Deallocates and recycles a vector previously created by newvec. See section 33. 

 
seconds() 

Returns the number of seconds since midnight 1st January 2000, local time. 
 
datetime(t, v) 

t is a time as obtained from seconds(), v must be a vector of at least 7 words. 
The time in t is decoded as follows: 
 v ! 0 := year 
 v ! 1 := month, 1-12 
 v ! 2 := day, 1-31 
 v ! 3 := day of week, 0 = Sunday 
 v ! 4 := hour, 0-23 
 v ! 5 := minute, 0-59 
 v ! 6 := second, 0-59 

 
datetime2(v) 

The current date and time is stored in compressed form in v. v must be a vector 
of at least 2 words. 
 v ! 0 : 13 most significant bits = year 
  4 next bits = month 
  5 next bits = day 
  3 next bits = day of week 
  7 least significant bits not used 
 v ! 1 : 5 most significant bits = hour 
  6 next bits = minute 
  6 next bits = second 
  10 next bits = milliseconds 
  5 least significant bits not used 

 
strlen(s) 

Returns the length in characters of the string s, not including the zero 
terminator. 

 
random(max) 

Returns a random integer between 0 and max, inclusive. 
random(-1) 

Randomises the random number generator. 
 
devctl(op, arg1, arg2, arg3,...) 

Input/output device control functions, see section 50. 
 
devctlv(v) 

Has the same functionality as devctl(), but the parameters op, arg1, arg2, etc 
are provided as elements 0, 1, 2, etc of the vector v. 
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DEVCTL operations 
 
Unit numbers identify individual discs or magnetic tape drives, numbered from 1 up. 
Tapes and Discs are numbered independently, there can be a tape number 1 and a disc 
number 1 at the same time. 
 
op = DC_DISC_CHECK 
   arg1 = unit number 

If the disc unit is available returns the total number of blocks it contains 
Otherwise returns 0 

 
op = DC_DISC_READ 
   arg1 = unit number 
   arg2 = first block number 
   arg3 = number of blocks 
   arg4 = memory address 

The indicated blocks (512 bytes or 128 words each) are read directly into 
memory starting at the address given. On success returns the number of blocks 
read. On failure returns a negative error code.  

 
op = DC_DISC_WRITE 
   arg1 = unit number 
   arg2 = first block number 
   arg3 = number of blocks 
   arg4 = memory address 

128 * arg2 words of memory starting from the address given are written 
directly into the indicated blocks. On success returns the number of blocks 
written. On failure returns a negative error code.  

 
op = DC_TAPE_CHECK 
   arg1 = unit number 

If the disc unit is available returns ‘R’ or ‘W’ indicating whether the tape was 
mounted for reading or for writing. Returns 0 if not available. 

 
op = DC_TAPE_READ 
   arg1 = unit number 
   arg2 = memory address 

One block is read from the tape unit directly into memory at the address given, 
returns the number of bytes in the block. All blocks are 512 bytes except that 
the last block of a tape may be shorter.  

 
op = DC_TAPE_WRITE 
   arg1 = unit number 
   arg2 = memory address 
   arg3 = size of block in bytes 

The indicated number of bytes, which must not exceed 512, of memory starting 
from the address given are written directly as a single block to the tape. Returns 
the number of bytes written.  



 
op = DC_TAPE_REWIND 
   arg1 = unit number 

Rewinds the tape to the beginning.  
 
op = DC_TAPE_LOAD 
   arg1 = unit number 
   arg2 = string, the filename of the tape 
   arg3 = the letter ‘R’ or ‘W’. 

The named file is made available as a magnetic tape unit. The letter R indicates 
that it is read only, and W that it is write only. Returns 1 on success, or a 
negative error code. 

 
op = DC_TAPE_UNLOAD 
   arg1 = unit number 

The tape is removed from the drive, returns 1 for success or a negative error 
code. 
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The program should be in a file whose name ends with .b. Here it is 
 

$ ls hello.* 
hello.b 
$ cat hello.b 
 
import "io" 
 
let start() be 
{ out("Greetings, Human.\n"); 
  out("Now go away and leave me alone.\n") } 

 
First run the compiler (you don’t need to type the .b in the file name). It creates an 
assembly language file whose name ends with .ass. The .ass file is human 
readable, you can look in it if you want. 

 
$ bcpl hello 
$ ls hello.* 
hello.ass   hello.b 

 
Then run the assembler. It produces an object file which is not human readable. 

 
$ assemble hello 
$ ls hello.* 
hello.ass   hello.b   hello.obj 

 
Then use the linker to combine your object file with the object files for the libraries 
it uses. The result is an executable image file whose name ends in .exe 
 

$ linker hello 
$ ls hello.* 
hello.ass   hello.b   hello.exe   hello.obj 

 
Fortunately there is a single command that does all three of those steps for you. It 
is called prep, short for prepare. 
 
Finally tell the emulator to start up and run that executable file 

 
$ run hello 
Greetings, Human. 
Now go away and leave me alone. 

 
So all that could have been done with just 

 
$ prep hello 
$ run hello 

 
If your program goes wrong while it is running, control-C will stop it, but you’ll 
need to type a few more control-Cs to stop the emulator too. 


