
Autocode - automatic generation of assembly code

We should be able to type a file like this:

function fff x y
 local a b c
begin
 set a = + * 3 * x x + * 5 x 1
 set b = + * 7 * y * y y + * 4 * y y + * 9 y 2
 set c = * a b
 return c
end

function main
 local cat bat hat
begin
 set cat = + 1 2
 set bat = + 3 4
 call fff 2 cat bat ‐> hat
 print hat
end

and have our autocode translator reliably produce correct assembly code for it.

A line only says one thing, and says it in a very simple way.

A line like function fff x y
 adds an entry fff=0 to the symbol table
 adds an entry x=+2 to the symbol table
 adds an entry y=+3 to the symbol table
 starts the count of local variables to 0
 produces the output fff:
 produces the output push fp
 produces the output load fp, sp

A line like local a b c
 adds entries a=‐1, b=‐2, c=‐3 to the symbol table
 adds three to the count of local variables

Invent an easy syntax for introducing large things like arrays, maybe local array b 9
Also remember that you’ll want globals too.

The line begin
 produces the output sub sp, localvariablecount

The line end
 produces the output load sp, fp
 produces the output pop fp
 produces the output ret
 removes all locals and parameters from the symbol table

A line like return or return value
 if there is a value, uses the polish converter to put it in register 0
 produces the output load sp, fp
 produces the output pop fp
 produces the output ret

A line beginning with set
 uses the polish converter to get the value in R1
 produces the output store r1, [thedestination]

and so on and so on and so on.

Design your own autocode language and create a translator for it.
This has to be a small-step by small-step process. Get something very basic working
properly, and only add small amounts to things that already work.

