
points $\mathrm{p} 1, \mathrm{p} 2$ define the base
angle α is how far the base is tilted over
angle β is how much further the end should be tilted over length b is the length of the base
length l is the length of the shape
length e is the length of the end
length s is the length of the shortest side
point p 3 is the mid-point of the base
point p 4 is the mid-point of the end
points $\mathrm{p} 5, \mathrm{p} 6$ are the end-points of the end.
$\mathrm{p} 1, \beta$ and l are always parameters
p 2 could be a parameter, from which b and α are derived
or b and α could be parameters from which p 2 is derived e could be a parameter if b is,
or t (taper) could be a parameter, and e is b / t
Using "graphics coordinates" in which the y axis is upside-down, and direction 0 is straight up and increases to the clockwise.
$\mathrm{b}=\operatorname{distance}(\mathrm{p} 1, \mathrm{p} 2)$
$\alpha=\operatorname{direction}(\mathrm{p} 1, \mathrm{p} 2)-90^{\circ}$
or

$$
\mathrm{p} 2=(\mathrm{p} 1 \mathrm{x}+\mathrm{b} \times \cos \alpha, \mathrm{p} 1 \mathrm{y}+\mathrm{b} \times \sin \alpha)
$$

if $\sin \beta>2 \times l / b$ do not continue, because s will be negative.

$$
\begin{aligned}
\mathrm{p} 3 & =((\mathrm{p} 1 \mathrm{x}+\mathrm{p} 2 \mathrm{x}) / 2,(\mathrm{p} 1 \mathrm{y}+\mathrm{p} 2 \mathrm{y}) / 2) \\
\mathrm{p} 4 & =(\mathrm{p} 3 \mathrm{x}+l \times \sin (\alpha+\beta), \mathrm{p} 3 \mathrm{y}-l \times \cos (\alpha+\beta)) \\
\mathrm{p} 5 & =(\mathrm{p} 4 \mathrm{x}-1 / 2 \mathrm{e} \times \sin \gamma, \mathrm{p} 4 \mathrm{y}-1 / 2 \mathrm{e} \times \cos \gamma) \\
\mathrm{p} 6 & =(\mathrm{p} 4 \mathrm{x}+1 / 2 \mathrm{e} \times \sin \gamma, \mathrm{p} 4 \mathrm{y}+1 / 2 \mathrm{e} \times \cos \gamma) \\
& \text { where } \gamma=90^{\circ}-\alpha-\beta
\end{aligned}
$$

