RSA

Named after its inventors (Rivest, Shamir, Adelman), another useful application of number theory.

Choose two big prime numbers of about the same size (same number of digits), call them p and q.
Compute n=pxq.

Choose a random number e, making sure that gcd ((p-1) x(g-1) ,e) =1.

Compute d=modinv (e, (p-1)x(g-1)).

Note that (dxe) % ((p-1)x(g-1)) =1
which means that (dxe) = kx(p-1)x(g-1)+1 forsome k (that’s what % is all about)
Also remember Euler’s Generalisation of Fermat’s Little Theorem, which says that

A“l%N — A((p—l)x(q-l ‘loN

= ((A'8N)xA)S&N ((A (p=11x(a-1) -1y A) SN
1 (At xarl=lony A) $N

= 1 = (A AT ASN)

= 1 = pl@ (Q‘))%N

Now notice that for any message m (a number less than n),
if we “encrypt” it by computing c=m°%n,

then if we compute x=c®%n:, then:
dg

o ~ hen
= i ErLx(a@-1)+le

So the act of raising something to the power of d modulo n can be reversed by raising the result to the
power of e modulo n.
And by the same reasoning, the act of raising something to the power of e modulo n can be reversed by
raising the result to the power of d modulo n.
Calculating Discrete Modular Logarithms is extremely hard, it can only be done by a brute-force search,
which means:
If you know that c=m®%n,
and you know c, e, and n,
you still can’t work out what m was,
unless you know d, in which case it is easy to work out m=c®%n,
but, even if you know what e and n are, you still can’t work out what d is,
‘ unless you know p and g,
and finding p and g from n is exactly as hard as finding the factors of a giant number.
(and the same is true if you swap around d and e)

What this means is that you have a secure’ Public Key encryption algorithm. (*: it remains secure so long
as it is impossibly difficult to find the factors of n).

There are two parts to it.
1. First, generate a Public and Private Key Pair:

Choose two giant prime numbers, called p and g. (Let’s say “giant” means 200 decimal digits)

Compute n =pxqg. (so n has 400 digits)

Choose a random number e, making sure that gcd ((p-1)x(g-1),e)=1.

Compute d = modinv (e, (p-1)x(g-1)).

Throw away p and q; destroy all record of them. You’ll never need them again, and if anyone else
ever finds them all is lost. With current technology it will take 54,000,000,000 years
for one computer to work out what p and g are.

Designate the pair (e, n) as your Public Key.

Designate the pair (d, n) as your Private Key.

Publish your Public key in universal directories and databases; security is based on everybody
knowing your public key, or at least being able to find it very easily, and it is very
important that nobody should be able to pretend that your public key is something
other than its true value.

Keep your Private key Completely Secret and very securely protected. Don’t lose it, don’t let anybody
see it. If you lose it nobody will be able to talk to you; if someone else finds it, they
will be able to become you.

2. Useit.

Let E,.»(x) denote encrypting x with your public key, i.e. Ep,p(x)=x°%n

Let E,~(x) denote encrypting x with your private key, i.e. Epm(x)=x%%n

X must be less than n to encrypt it in one go, but larger messages are just split up into smaller

blocks that are encrypted one-by-one. If n is a 400 decimal digit number, that is equivalent
to 1327 bits, so you can split a message up into convenient 128-byte chunks for encryption.

Remember that E,.(Epm(x))=x and Epn(Epus(x))=x

Everyone in the world, including you, can perform E,.;(x)

You and only you can perform Ep.(x)

To make some data X secret, replace it with X=E,,;(X). Only you can recover it with X=E,,,(X).

To be sure your data hasn’t been changed, produce a one-way-hash H of it, and encrypt the one way hash
with H'=E,.,(H). Anybody can decrypt H’ to find out what the one-way-hash value was, but so what? If
anybody changes your data, the value of the one-way-hash will change; they can compute the new one-
way-hash value, but they can’t fool you, because they can’t produce a new valid H’. (To “Sign and Seal”
a document encrypt a one-way-hash of it with your private key).

If somebody wants to send a message M that only you can read, they perform C=E,;(M), and send C to
you by totally insecure means. They can even publish it in the newspaper, knowing that only you will be
able to work out what M was. (A private message to A is encrypted with A’s public key).

If you want to send a message to somebody, so that they can be absolutely certain that it really was you
who sent it, and nobody has modified it in any way, you perform C=E,.(M), and send C to them. Anyone
who sees C can decrypt it with M=E,,;(C), but anybody who finds that E,,;(C) produces a valid message
knows that it must have been created by C=E,,(M), and therefore knows that you must have created it. (A
signed message from A is encrypted with A’s private key).

These last two can be combined: If A wants to send a message to B, so that only B can read it, and B can
be sure that it really came from A and hasn’t been altered, A encrypts it with his own private key and then
. again with B’s public key.

To prove your identity to a stranger, send them a personalised, timed and dated, greeting encrypted with
your own private key. Ep(“Howdy Mr. Smith at 12.15 on 27" November 2002 from X. Jones”). By
retrieving X. Jones’ public key from the universal directory/database, Mr. Smith can decrypt the greeting
and know it was written by X. Jones, the person you claim to be. The time and date simply ensure that
you aren’t just passing on a greeting that the real X. Jones gave to you in the past.

It is very important that public keys really are public. Not just non-secret, but actively publicised and
universally accessible. It must be impossible for anyone to get away with falsifying the record of
someone’s public key.

How? The system comes to its own rescue. If there is one (or just a few) central public database for
public keys (like directory enquiries for the phone company (before deregulation)), that central registry
can have its own public-private key pair. The one and only public key for the one and only central registry
can be built into the hardware of communication devices, so they can never be tricked about it, and the
central registry simply encrypts all responses to public key enquiries with its own private key.

R.S.A. is only as secure as it is difficult to factorise very big numbers. If somebody discovers a new
factoring method all could be lost. But then, if somebody discovers a flaw in the permutations of DES or
RC4, all is equally lost. With a public key system, each person only needs to keep one encryption key
ever (but that one key is very valuable). For symmetric systems (e.g. DES, RC4) there must be a separate
pair for each pair of people who ever want to communicate. Your RSA private key provides you with a
secure digital identity, symmetric encryption keys can’t do anything of the sort.

With current technology, a computer would have to devote 48,000,000 years to crack a 1024-bit RSA key.
you would only need a 73-bit DES key to require the same amount of cracking effort. But then, how
would you make a secure 73-bit version of DES? 56-bit DES is nearly 1,000,000 times less secure than
73-bit. And how important is key length? People are not expected to memorise them.

DES encryption is approximately 1,000 times faster than RSA encryption; RC4 is 10 times faster than that.

Don’t just pick one and use it for everything. It is quite reasonable to pick a 2048-bit RSA key pair (which
would take 42,000,000,000,000,000 years of modern computing to crack) and only use it to encrypt small
things (digital signatures, one-way-hashes, etc.) so it doesn’t matter how slow it is. Then when you need
secure communications for something big, make up a Session Key, an encryption key that will only ever
be used once, then destroyed; use 2048-bit RSA to encrypt it and securely send it to your friend, then use
that session key with something fast like RC4 for this one long communication.

$ cat_rsa.cpp
#include <stdio.h>

#include <stdlib.h>
#include <string.h>

void usage (void)
.{ fprintf (stderr, "either: rsa gen <keylength-up-to-31>\n");
fprintf (stderr, " or: rsa enc <key>\n");
exit(1l); }

int isprime (int n)
{ 1f (n%2==0) return 0;
int max=(int) (sgrt(n)+1);
for (int i=3; i<max; i+=2)
if (n%i==0) return 0;
return 1; 1}

int firstprimefrom(int n)
{ 1if (n%2==0) n+=1;
while (1)
{ if (isprime(n)) return n;
n+=2; } }

int gecd{int a, int b)
{ while (b!=0)
{ int t=a%b:
a=b;
b=t; }
return a; }

int extged(int a, int b, int & m, int & n)
{ int ml, nl, g:

if (b==0)

{ g=a; m=1; n=0;

return g; }

g=extgcd (b, a%b, ml, nl);

int quo=a/b;

m=nl;

n=ml-quo*nl;
' return g; }
int modinv(int a, int n)

{ int g, %, ys
g=extgcd(a, n, %, y);

if (gi=1)
| { fprintf(stderr, "Error: impossible modinv(%d,%d)\n", a, n);
| exit(l); }

return x; }

int modpower {(int base, int expo, int modu)
{ long long int b=base;
long long int m=modu:
long long int a=1;
while (expo>0)
{ 1f (expos&l)
{ a*=b;
a%$=m; }
b*=b;
b%=m;
expo>>=1; }
return a; }

void main (int argc, char *argv([])
{ 1f (argc!=3)
usage () ;
if (strcasecmp(argv([l], "gen")==0)
{ int keylen=atol({argv([2]):
if (keylen<=0 || keylen>30)
{ fprintf(stderr, "keylength of %d bits no good\n", keylen);
exit(1); }
srandomdev () ;
int keymin=1<<(keylen/2):;

int keyrange=keymin/2;

. int p=firstprimefrom{keymin+random()%keyrange);
int g=firstprimefrom(p+random() %keyrange);
int n=p*qg;

printf("p = %d\n", p);
printf("qg = %d\n", q);
printf("n = %d\a", n);

int e, d;
do
{ e=random()%keylen+2;
while (gcd(e, (p-1)*(g-1)}!=1)

et+=1;
d=modinv(e, (p-1)*(g~1)); }
while (d<0 || e<0);
printf("d = %d\n", d);

printf("e = %d\n", e);

printf ("your public key is %d:%d\n", e, n);

printf ("your private key is %d:%d\n", d, n); }
else if (strcasecmp(argv[l], "enc")==0)
{ char *s=strtok(argv[2], ":");

int d=atol(s):

s=strtok (NULL, "™:");

int n=atol(s);

printf("d = %d\n", d);
printf("n = %d\n", n);
while (1)

{ printf({"? ");
int m, k=scanf("3d", &m):;:
if (k!=1) break;
int c=modpower (m, d, n);
printf("™ -> %d\n", c); } }
else
usage(}; }

rsa gen 20
= 1523

= 1931

= 2940913

= 652769

=9

your public key is 9:2940913

your private key is 652769:2940813

® QB.QT

S rsa enc 9:2940913
d =9
n = 2940913
2 12
-> 1418950
? 123
-> 787644
? 111
-> 1424022
? c¢trl-D

(The numbers 12, 123, 111 are encrypted as 2940913, 1418950, 1424022)

S rsa enc 652769:2940913
d = 652769
n = 2940913
? 1418950
-> 12
? 787644
-> 123
? 1424022
-> 111
? etrl-D

(The numbers 2940913, 1418950, 1424022 are decrypted as 12, 123, 111)

Average T) Table 7.1
ge Time Estimates for a Hardware Brute-Force Attack in 1995

LeNcTH OF KEY IN BITS

Cost 40
56 64 80
$100K 2 AL 112 128
o M seconds 35 hours {1year; 70,000 years 10% 19
.2 seconds 3.5 hours 37 davs 7(’)0 years 107 years
$10M .02 seconds 21 minutes 4 days Oyears 10* years 10%years
$100 M 2 milliseconds 92 min 7 700 years 10" years 10V years
$1G - utes 9 hours 70 years 10! 16
.2 milliseconds 13 seconds 1 hour years 10 'years
7 years 10% years 10% years

$10G .02 milliseconds i

$100.G 2 microseconds 11 Ssifzzrlﬁl 58; mmu':s FPnA T e

$1T .2, microseconds .01 second 3 Second SRR e e

$10 T .02 microseconds 1 millisecond 3secon " Y e 10 years 0L
.3 second 6 hours 10¢ years 10! years

Table 7.2
Brute-Force Cracking Estimates for Chinese Lottery
T TO BREAK

Country population _ # of Televisions/Radios 56-bit 64-bit
China 1,190,431,000 957,000,000 780 seconds 20 hours
U.s. 260,714,000 739,000,000 97 seconds 6.9 hours
Traq 19,890,000 4,730,000 49 hours 44 days
Israel 5,051,000 3,640,000 55hours 58 days
Wyoming 470,000 1,330,000 15 hours 160 days
Winnemucca, NV 6,100 17,300 48 days 34 years

(All data is from the 1995 World Almanac and Book of Facts.)

-

arguio.

Factoring large numbers is hard. Unfortunately for algorithm designers, it is get-
ting easier. Even worse, it is getting easier faster than mathematicians expected. In
1976 Richard Guy wrote: “I shall be surprised if anyone regularly factors numbers of
size 10% without special form during the present century” [680]. In 1977 Ron Rivest
said that factoring a 125-digit number would take 40 quadrillion years [599]. In 1994
a 129-digit number was factored [66]. If there is any lesson in all this, it is that mak-
ing predictions is foolish.

Table 7.3 shows factoring records over the past dozen years. The fastest factoring
algorithm during the time was the quadratic sieve (see Section 11.3).

These numbers are pretty frightening. Today it is not uncommon to see 512-bit
numbers used in operational systems. Factoring them, and thereby completely com-
promising their security, is well in the range of possibility: A weekend-long worm
on the Internet could do it.

Computing power 1s generally measured in fips-yeais: a one-in i on-msracaon.
per-second (mips) computer running for one year, or about 3+10% instructions. By
convention, a 1-mips machine is equivalent to the DEC VAX 11 /780. Hence, a mips-
year is a VAX 11/780 running for a year, or the equivalent. {A 100 MHz Pentium is
about a 50 mips machine; a 1800-node Intel Paragon is about 50,000.)

The 1082 fartarizatinn of a 71.dicit+ niimher reanired N 1 minc.veare. the 1004 far.

Table 7.3
Factoring Using the Quadratic Sieve
of decimal How many times harder to

Year digits factored factor a 512-bit number
1983 71 >20 million
1985 80 >2 million
1988 90 250,000
1989 100 30,000
1993 120 500
1994 129 100

