RC4

Solves the problems that make XOR encryption easily crackable by producing a random stream of bytes
(based on the key of course), and exclusive-oring the bytes of the message with those random bytes. RC4
is essentially a random number generator; the random numbers are the real encryption key, and the user’s
key is the seed to the random number generator. I have seen no reports of anyone having made any
progress towards cracking RC4.

#include <stdio.h>
typedef unsigned char byte;

int hex (char c)
{ if (c>='0' && c<="'9") return c-'0";
if (c>='A' && c<='F') return c-'A'+10;

/* elc elcefc */ }

byte * stringtohex(char *code)
{ int codelen=strlen (code);
int keylen=(codelen+l)/2;
byte *key=new bytelkeylen+l];
key[0l=keylen;
key+=1;
int start=0;
1f (codelen%2==1)
{ key[0O]l=hex{(code[0]);
start=1; }
for (int i=start, Jj=start; j<codelen; i+=1, j+=2)
keylil=(hex(code[]j])<<4)+hex(code[j+1]);
return key-1; }

int S[256]1, rcdi, rc4dj;

vold swap{int & x, int & y)
{ int t=x; =x=y; y=t; }

int reset (byte keyl])
{ int len=key[0];
key+=1;
int K[256];
for (int i=0, j=0; i<256; i+=1, j+=1)
{ s[il=i;
if (j>=len) j=
Klil=key[31; }
int j=0;
for (int i=0; 1i<256; i+=1)
{ J=(j+S[i]+K[i])%256;
swap (S[{il, S[31): }
" rcdi=0;
rcdj=0; }

0;

byte rcd (byte c¢)

{ rcdi=(rcdi+l)%256;
rcdj=(rcdj+S[rcdi])%256;
swap(S[rcd4i], S[rc4dijl):
int t=(S[rc4il+S[rc4i])%256;
return c”S[t]; }

void main (int argc, char *argvi])
{ if (argc!=2)
{ fprintf (stderr, "Need hexadecimal key on command line\n");
exit (1); }
byte * key = stringtohex(argv[1l]):;
reset (key) s
while (1)
{ int c=getchar();
if (c==EOQOF) break;
putchar{rcd(c)); } }

The array S contains a permutation of all possible 8-bit values. The reset function uses the user’s

encryption key to initially jiggle the S array around. The user’s key can be any length up to 256 bytes (or

2048 bits, which is pretty good). Every character of plaintext is exclusive-ored with a byte from S, and
. that byte is then used to jiggle the S array even more.

This is a symmetric algorithm, meaning that encryption and decryption a both performed by the
same algorithm using the same key. Convenient in some ways (when encrypting files, you only have to
remember one password), but it means that you need a different password for every person you will ever
want to have secure communications with.

It is also extremely fast.

$ cat plain
One two three four five six

the cat sat on the mat.
the rain in Spain falls mainly in the plains.

$ rcd 74A5BE10F871 <plain >secret

S cat secret
ck(ud'#l/;elU, 5)€+4z24]
YtEz053R¢®0 " nuf 3—»vdiOyMSNAF’ "A=31f14™A~ YaLEBYU, FE0&63626CH ! x1

S rcd 74A5BE10F871 <secret

One two three four five six

the cat sat on the mat.

the rain in Spain falls mainly in the plains.

$ rcd 74ASBE10FB872 < secret // just one bit of the key wrong, and it isn’t even close.
ZZs#ul

EO8Co0R%niika» [1;
. iEJeDS LHAM" : 1%S21@HARAq**°+§k*SAEA' 64 \DP~; >U[LusSFi*xXEf-8104U¥A

$ rcd 823B2E20385CC <peter.pan >secret
$ 1ls -1 peter.pan secret

—rW——————— 1 stephen wheel 262612 Nov 25 03:07 peter.pan
—IrW—— - 1 stephen wheel 262612 Dec 1 15:12 secret // same length

