
The new type mystream is introduced to make the extraction of symbols and numbers
embedded within a string simple and non-confusing.

struct mystream
{ string line;
 int pos; };

A mystream is a bit like the familiar istreams (cin, etc). It remembers how far you’ve
got with running through a string, so you can always ask it for the next thing without
having to remember any details yourself. Seems trivial, but in many circumstances, it
really does help a lot.

A mystream’s line holds the whole string being processed, including the portions
already dealt with and the portions not yet looked at. The pos component just records
how many characters from that string have already been used.

Typically, you might read a whole formula from the keyboard or a file, and use it to set
up a mystream:

{ string form;
 cin >> form;
 mystream str;
 initialise(str, form);
 ...

So you already know what one function must do

void initialise(mystream & ms, string x)
{ ms.line = x;
 ms.pos = 0; }

Obviously useful operations include asking if the stream is empty yet, with nothing left to
read, taking the next character, and just sneaking a look at the next character without
actually committing to take it. They are all easy to write.

bool empty(mystream ms)
{ if (ms.pos >= ms.line.length())
 return true;
 else
 return false; }

char sneak_next_char(mystream ms)
{ if (empty(ms))
 return ‘.’;
 else
 return ms.line[ms.pos]; }

char get_next_char(mystream & ms)
{ if (empty(ms))
 return ‘.’;
 else
 { char answer = ms.line[ms.pos];
 ms.pos += 1;
 return answer; } }

It would be useful to have some sensible utility functions for identifying what kind of
character we are looking at, and the standard C++ library has them all predefined (you
just have to #include <ctype.h>)

bool isdigit(char c); returns true only for ‘0’ to ‘9’.
bool islower(char c); returns true only for ‘a’ to ‘z’.
bool isupper(char c); returns true only for ‘A’ to ‘Z’.
int digittoint(char c); returns 0 for ‘0’, 1 for ‘1’, ..., 9 for ‘9’.

Now we can perform some higher level operations very simply:

To read the next element symbol (capital letter, maybe followed by a little letter) from a
mystream:

string get_next_symbol(mystream & str)
{ if (isupper(sneak_next_char(str)))
 { string answer = "";
 answer += get_next_char(str);
 if (islower(sneak_next_char(str)))
 answer += get_next_char(str);
 return answer; }
 else
 return "Error!!!!!!!!"; }

To read the next number (just a sequence of digits) from a mystream:

int get_next_number(mystream & str)
{ int total = 0;
 while (isdigit(sneak_next_char(str)))
 { char c = get_next_char(str));
 total = total * 10 + digittoint(c); }
 return total; }

The two step procedure for making a string from a single character is so irritating that I
usually just give myself a little helper function like this:

string tostring(char c)
{ string answer = "";
 answer += c;
 return answer; }

Then the get_next_symbol function can look a little less peculiar.

string get_next_symbol(mystream & str)
{ if (isupper(sneak_next_char(str)))
 { string answer = tostring(get_next_char(str));
 if (islower(sneak_next_char(str)))
 answer += get_next_char(str);
 return answer; }
 else
 return "Error!!!!!!!!"; }

