
EEN118 LAB TWO

The purpose of this lab is to get practice with defining and using
your own functions. The essence of good structured programming is to
split large problems into smaller and smaller sub-problems. Small sub-
problems should have small solutions which can be programmed quickly
and reliably. Functions that solve each of the small sub-problems are used
together to solve the original big problem. Divide and conquer.

If you just go immediately to the last step and wonder how to do it,
this may seem like an impossibly long and detailed assignment. If you
work through the numbered steps properly, you will soon see that it isn’t.

After each step, look over what you have done carefully, and make
sure you completely understand it, and that it does not seem particularly
complicated any more. When starting the next step, think carefully how
you can use what you have already done to make it easy.

1. A Five-Pointed Star.

In a previous lab exercise, you wrote a program that draws a pentagram, which is
almost a five-pointed star, but has a pentagon inscribed inside it. Adapt that program
so that it draws a clean five-pointed star with no extra lines, just like you would
expect to see on an American flag.

You should be able to work out what the correct angles are, but in case you can’t,
they are given at the top of the next page.

2. A Function.

Convert the part of your program that actually draws the star, after all the set-up, into
a function. Make this function good and flexible (it will need to have at least one
parameter), so that it can draw a star of any size and at any position.
Verify that you have got it right by using your function to draw a variety of stars in
the same window. Make sure they all come out with the right orientation.

The angles inside the points of the star are 36°, the wider “shoulder” angles are 108°.

3. Colouring It In.

Drawing the outline of a star is all very well, but they would look much better if filled
with some solid colour, or perhaps if they were white shapes on a coloured
background.

Filling a whole rectangular area with a single colour is easy, and there is a library
function that does it in a single operation. Just give it the x and y co-ordinates of the
top left corner of the area, then the width, then the height, and it’s done. Naturally, it
uses whatever the current pen colour is, e.g.:

set_pen_color(color::blue);
fill_rectangle(10, 10, 200, 50);

will fill the whole area from x=10 to x=210 and y=10 to y=60 in blue.

To fill a more complex shape, your program must define each of its corners one by
one. There are three simple steps:

a. Use the start_shape() function, just to tell the system that a new shape
is about to be defined.

b. Move the pen to each of the corners in turn. When the pen is positioned at
a corner, use the note_position() function to tell the system to record
this position as a point on the outline of the shape. You don’t need to
draw, just move the pen to the right places.

c. Finally, set the pen to the right colour, and call the fill_shape()
function.

Here is a simple example that draws a slightly irregular solid red triangle:

 start_shape();
 move_to(100, 100);
 note_position();
 move_to(150, 150);
 note_position();
 move_to(50, 120);
 note_position();
 set_pen_color(color::red);
 fill_shape();

It is a peculiarity of windows that whenever it fills a shape, it also draws the outline
using the current pen settings. If you haven’t selected a very thin pen, the shape will
have a slightly blurry or rounded appearance.

Make your star function draw solid sharp stars.

4. The Lone-Star Program.

Test your function in a program that draws the state flag of Texas. It will just take a
minute or two of experimentation to get the proportions looking exactly right. Don’t
be afraid of trial-and-error. This is how it should look:

5. Rows of Stars.

Write a new function that makes use of your existing star-drawing function to draw a
horizontal row of six evenly spaced solid white stars. If you have got the right idea,
this will be very easy.

You have already completely solved the problem of drawing one solid white
star. There is no need to modify that function in any way. All you have to do for this
new function is to call the existing function a few times.

Give the new function a sensible name, something like row_of_six_stars, and
make sure that it is good and flexible: it should be able to draw its row of stars
anywhere you want.

Once your row of six stars looks right, take a few seconds to make another function
which this time draws a row of just five stars.

6. Blocks of Stars.

Now it will take almost no effort to write another function that calls both your
row_of_six_stars and row_of_five_stars functions to make a block of
eleven stars:

Take the time to get the stars properly spaced, so that the two rows slightly overlap as
shown, because you know what is coming next. Get this stage right, and the next will
not be very hard at all.

7. The American Flag.

You are now at the point where your solutions to smaller sub-problems can be made
into a realtively simple solution to a much larger and more complex problem. Write a
program that draws a good rendering of the American flag.

Try to get it looking just right. After all this effort, you might as well do it properly.
Officially the ratio of width to height of the flag should be 19 to 10.

