
EEN118 LAB ELEVEN

In this lab, you will be performing some important data-processing

operations, specifically sorting a large database file. Sorting data is a very
important operation in computing for many reasons. One of those reasons is
that it makes the data more accessible to humans once it is printed (imagine
trying to use a telephone directory in which the names do not appear in any
particular order). Another reason is that it makes the data more quickly
searchable by the computer.

There are four large datafiles to download for this lab. You will only need
the first one unless you get on to the advanced parts. They are all available on
the class web-site, and are named database1.txt, database2.txt, database3.txt,
and database10.txt.

Important Note

This lab is to be run under a Unix system, not windows. You must also use only the
standard C++ and Unix library files. Do not #include library.h. Try to remember what the
standard includes are, but if you can’t remember, the lab guys will remind you.

Download the file "database1.txt" and use a text editor to take a quick look at it.

You will see that it contains data about a number of people. Each line contains exactly four
items: a person’s social security number, their first name, their last name, and their date of
birth. The four items are separated by spaces, but no item will ever contain a space. Here is a
sample from the middle of the file:

243810667 Chester Peters 19210320
244260287 Lynne Dobson 19781211
244550439 Napoleon Stein 19810110
244940274 Eileen Holloway 19351104
245340593 June Ride 19370522
246230419 Rupert Ogham 19590810
248890854 Christopher Nixon 19510503
250410626 Lars Root 19520508
252190308 Petunia Aspen 19421001
253780249 Otto Osmond 19270802
257390263 Roscoe Smithers 19840718
258080395 Ellery Farmer 19370524
258230892 Calvin Hornswaggle 19431217
259280426 Tammy Moriarty 19490204
259320410 Jim Wilder 19441217
264880013 Azalea Smelley 19740811
266640093 Incitatus Laurel 19720124
267110552 Isaac Mason 19661121

As you may have noticed, the date of birth is provided as a single integer, in the format
yyyymmdd; Chester Peters was born on the 20th of March 1921. The file database1.txt
contains exactly 1000 lines of data.

1. Read the Data

Write a program that creates an array large enough to hold all the data, then reads all the
data from the file into that array. Of course, it will have to be an array of structs that you
will also need to define. Make your program close the file, then print out the first 10 items of
data from the array, so that you can make sure everything was read correctly.

2. Basic Search

Make your program ask the user to enter a name. It should then search through the data in
the array (don’t read the file again), finding any entry with a matching name. Correct matches
with either first or last name should be accepted. For every matching entry that is found, print
out all four data items: the social security number, first and last names, and date of birth of
each matching person.

Remember that if you use the == operator to compare strings, the test is case-sensitive.
The user (i.e. you) will have to type the name exactly correctly, with capital letters in the right
places.

Important: Good clean design will make this lab much easier. Write a separate function
that searches the array, do not put all the work in main.

3. Find the Oldest

Modify your program so that after closing the file, instead of printing the first ten items of
data, it searches through them all to find the oldest person represented. It should print the
social security number, first and last names, and date of birth of the oldest person found.

Important: As for part two, good clean design will make this lab much easier. Write a
separate function that searches the array to find the oldest person, do not put all the work in
main.

4. Promote the Oldest

For some unfathomable reason, the management wants the oldest person to occupy the
first position in the array. Modify your program so that after finding the oldest person, it
swaps his or her data with the data already occupying the first position in the array.
Remember that the first position in an array is numbered zero, not one.

5. Now Promote the Second Oldest.

The management has now decided not only that the oldest person must occupy the first
position in the array, but also that the second-oldest person must occupy the second position
in the array. So, after searching for the oldest and moving their data to the front of the array,
now search the remainder of the array (all except the first element), and move the oldest
person you find (which must be the second oldest of all) into the second position of the array.
Make sure you swap data, so that whoever was originally in the second position is not lost.

6. More of the Same.

The management are going to keep on adding requirements like this, next putting the third-
oldest in the third position, then the fourth, then the fifth. There is no knowing when they will
grow out of this petty obsession, so make things easier for yourself. Modify your search
function so that it can be told how much of the array to search. That is, give it two int
parameters (let’s call them a and b); its job is now to search only the portion of the array
between position a and position b, to find the oldest person therein. This makes it very easy to
search the remainder of the array to find the second and third oldest.

7. The Ultimate Demand.

Now the management make their final demand. You are to repeat the process of moving
the nth-oldest person into the nth position 1000 times. (remember, 1000 is the number of data
records in the whole file).

This will result in the array being completely sorted. Do it, and check that it worked.
Make your program print the contents of the array after it has finished. Look at the output to
make sure that everyone is printed in order of their age.

8. Sorting the File.

Once you have sorted the contents of the array, it might be a good idea to save the sorted
data in a file. Make your program create a new file, and write all the contents of the array into
that file in a sensible format. Use a text editor to look at the file and verify that it has the same
format as the original file, and all the data is properly sorted.

9. How Fast Is It?

It is important to know how long computer operations are going to take when they have to
work on a large amount of data. The standard Unix functions that give accurate timing are a
little mysterious, so here is a little function that you can just copy and paste into your
program. It requires two extra library files to be included, they are:

#include <time.h>
#include <sys/resource.h>

Here is the function

double get_cpu_time()
{ struct rusage ruse;
 getrusage(RUSAGE_SELF, &ruse);
 return ruse.ru_utime.tv_sec+ruse.ru_utime.tv_usec/1000000.0 +
 ruse.ru_stime.tv_sec+ruse.ru_stime.tv_usec/1000000.0; }

It returns the time as a double, and is accurate to a couple of milliseconds.

Use this function (twice) to time how long it takes the computer to sort the array of 1000
data items. Do not include the time it takes to read the file or the time it takes to write the new
file, just the pure sorting time. Note the time that you observe.

Now you know how long it takes to sort a database of 1000 items. How long do you think
it would take to sort a database of 2000 names? 3000 names? 10,000 names?

Think about those questions, and work out what you believe the answer is. Then find out
what the real answer is. The three other files, database2.txt, database3.txt, database5.txt,
database10.txt,and database20.txt contain 2000, 3000, 5000, 10000, and 20000 data items
respectively. If your program was nicely written, it will be a few seconds’ work to change the
array size and make it read a different file.

See how long it takes to sort these larger files, and compare the results to your predictions.
If your predictions weren’t substantially correct, make sure you understand why. You have
just demonstrated a very important phenomenon of computing.

